3,966 research outputs found
SMART Cables for Observing the Global Ocean: Science and Implementation
The ocean is key to understanding societal threats including climate change, sea level rise, ocean warming, tsunamis, and earthquakes. Because the ocean is difficult and costly to monitor, we lack fundamental data needed to adequately model, understand, and address these threats. One solution is to integrate sensors into future undersea telecommunications cables. This is the mission of the SMART subsea cables initiative (Science Monitoring And Reliable Telecommunications). SMART sensors would “piggyback” on the power and communications infrastructure of a million kilometers of undersea fiber optic cable and thousands of repeaters, creating the potential for seafloor-based global ocean observing at a modest incremental cost. Initial sensors would measure temperature, pressure, and seismic acceleration. The resulting data would address two critical scientific and societal issues: the long-term need for sustained climate-quality data from the under-sampled ocean (e.g., deep ocean temperature, sea level, and circulation), and the near-term need for improvements to global tsunami warning networks. A Joint Task Force (JTF) led by three UN agencies (ITU/WMO/UNESCO-IOC) is working to bring this initiative to fruition. This paper explores the ocean science and early warning improvements available from SMART cable data, and the societal, technological, and financial elements of realizing such a global network. Simulations show that deep ocean temperature and pressure measurements can improve estimates of ocean circulation and heat content, and cable-based pressure and seismic-acceleration sensors can improve tsunami warning times and earthquake parameters. The technology of integrating these sensors into fiber optic cables is discussed, addressing sea and land-based elements plus delivery of real-time open data products to end users. The science and business case for SMART cables is evaluated. SMART cables have been endorsed by major ocean science organizations, and JTF is working with cable suppliers and sponsors, multilateral development banks and end users to incorporate SMART capabilities into future cable projects. By investing now, we can build up a global ocean network of long-lived SMART cable sensors, creating a transformative addition to the Global Ocean Observing System
Cosmic Texture from a Broken Global SU(3) Symmetry
We investigate the observable consequences of creating cosmic texture by
breaking a global SU(3) symmetry, rather than the SU(2) case which is generally
studied. To this end, we study the nonlinear sigma model for a totally broken
SU(3) symmetry, and develop a technique for numerically solving the classical
field equations. This technique is applied in a cosmological context: the
energy of the collapsing SU(3) texture field is used as a gravitational source
for the production of perturbations in the primordial fluids of the early
universe. From these calculations, we make predictions about the appearance of
the anisotropies in the cosmic microwave background radiation (CMBR) which
would be present if the large scale structure of the universe was
gravitationally seeded by the collapse of SU(3) textures.Comment: 28 pages, latex, 11 figures, submitted to Phys. Rev.
Estimating Soil Moisture Under Low Frequency Surface Irrigation Using Crop Water Stress Index
The present study investigated the relationship between the crop water stress index (CWSI) and soil moisture for surface irrigated cotton (Gossypium hirsutum, Delta Pine 90b) at Maricopa, Arizona during the 1998 season. The CWSI was linked to soil moisture through the water stress coefficient Ks that accounts for reduced crop evapotranspiration when there is a shortage of soil water. A stress recovery coefficient Krec was introduced to account for reduced crop evapotranspiration as the crop recovered from water stress after irrigation events. A soil water stress index (SWSI) was derived in terms of Ks and Krec . The SWSI compared reasonably well to the CWSI, but atmospheric stability correction for the CWSI did not improve comparisons. When the CWSI was substituted into the SWSI formulation, it gave good prediction of soil moisture depletion (fDEP; when to irrigate) and depth of root zone depletion (Dr ; how much to irrigate). Disagreement was greatest for fDEP\u3c0.6 because cotton is less sensitive to water stress in this range
High blood pressure predicts hippocampal atrophy rate in cognitively impaired elders.
INTRODUCTION: Understanding relationships among blood pressure (BP), cognition, and brain volume could inform Alzheimer's disease (AD) management. METHODS: We investigated Alzheimer's Disease Neuroimaging Initiative (ADNI) participants: 200 controls, 346 mild cognitive impairment (MCI), and 154 AD. National Alzheimer's Co-ordinating Center (NACC) participants were separately analyzed: 1098 controls, 2297 MCI, and 4845 AD. Relationships between cognition and BP were assessed in both cohorts and BP and atrophy rates in ADNI. Multivariate mixed linear-regression models were fitted with joint outcomes of BP (systolic, diastolic, and pulse pressure), cognition (Mini-Mental State Examination, Logical Memory, and Digit Symbol) and atrophy rate (whole-brain, hippocampus). RESULTS: ADNI MCI and AD patients with greater baseline systolic BP had higher hippocampal atrophy rates ([r, P value]; 0.2, 0.005 and 0.2, 0.04, respectively). NACC AD patients with lower systolic BP had lower cognitive scores (0.1, 0.0003). DISCUSSION: Higher late-life BP may be associated with faster decline in cognitively impaired elders
- …