2,193 research outputs found

    Three Independent Evaluations of Healthy Kids Programs Find Dramatic Gains in Well-Being of Children and Families

    Get PDF
    Presents highlights from evaluations of a comprehensive health insurance coverage program for children, launched by Children's Health Initiatives and supported by the California Endowment, in Los Angeles, San Mateo, and Santa Clara counties

    Internet polls are regularly underestimating support for Hillary Clinton

    Get PDF
    Since the Republican and Democratic conventions in July, Hillary Clinton has experienced a poll ‘bounce’, to lead Donald Trump by about 8 percent, especially in telephone polls with live interviewers. Internet polls, by contrast, tend to show Clinton leading by only 2 or 3 percent. Are these internet polls underestimating Clinton or overestimating Trump? Using results from the 2016 presidential primaries to assess state polls’ accuracy, Taylor Howell, Christopher Stout and Reuben Kline find that that internet polls were slightly more likely to overestimate support for Trump than live interviewer polls, and that they were likely to underestimate support for Clinton by nearly 2 percent. They suggest that online polls may still have some ways to come in terms of accuracy and may be skewing away from Clinton by offering a “don’t know” option to those who are as yet unwilling to commit to voting for her

    Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores

    Get PDF
    We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment, and whether they form a small or large number of protostars. Our simulations use the Orion adaptive mesh refinement code to follow the collapse from ~0.1 pc scales to ~10 AU scales, for durations that cover the main fragmentation phase, using three-dimensional gravito-radiation hydrodynamics. We find that for a wide range of initial conditions radiation feedback from accreting protostars inhibits the formation of fragments, so that the vast majority of the collapsed mass accretes onto one or a few objects. Most of the fragmentation that does occur takes place in massive, self-shielding disks. These are driven to gravitational instability by rapid accretion, producing rapid mass and angular momentum transport that allows most of the gas to accrete onto the central star rather than forming fragments. In contrast, a control run using the same initial conditions but an isothermal equation of state produces much more fragmentation, both in and out of the disk. We conclude that massive cores with observed properties are not likely to fragment into many stars, so that, at least at high masses, the core mass function probably determines the stellar initial mass function. Our results also demonstrate that simulations of massive star forming regions that do not include radiative transfer, and instead rely on a barotropic equation of state or optically thin heating and cooling curves, are likely to produce misleading results.Comment: 23 pages, 18 figures, emulateapj format. Accepted to ApJ. This version has minor typo fixes and small additions, no significant changes. Resolution of images severely degraded to fit within size limit. Download the full paper from http://www.astro.princeton.edu/~krumholz/recent.htm

    The Burrell-Optical-Kepler-Survey (BOKS). I. Survey Description and Initial Results

    Get PDF
    We present the initial results of a 40 night contiguous ground-based campaign of time series photometric observations of a 1.39 deg^2 field located within the NASA Kepler Mission field of view. The goal of this pre-launch survey was to search for transiting extrasolar planets and to provide independent variability information of stellar sources. We have gathered a data set containing light curves of 54,687 stars from which we have created a statistical sub-sample of 13,786 stars between 14 < r < 18.5 and have statistically examined each light curve to test for variability. We present a summary of our preliminary photometric findings including the overall level and content of stellar variability in this portion of the Kepler field and give some examples of unusual variable stars found within. We present a preliminary catalog of 2,457 candidate variable stars, of which 776 show signs of periodicity. We also present three potential exoplanet candidates, all of which should be observable by the Kepler mission

    Exoplanet Characterization by Proxy: a Transiting 2.15 R_Earth Planet Near the Habitable Zone of the Late K dwarf Kepler-61

    Full text link
    We present the validation and characterization of Kepler-61b: a 2.15 R_Earth planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with the set of spectroscopically similar stars with directly-measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15+/-0.13 R_Earth and an equilibrium temperature of 273+/-13 K (given its period of 59.87756+/-0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby "proxy" stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.Comment: 23 pages, 12 figures. Accepted for publication in Ap

    Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Radial Velocity and Direct Imaging Techniques

    Get PDF
    13 pages, 6 figures, 4 tables, accepted for publication in the Astronomical Journal (submitted 25 Feb 2019; accepted 28 April 2019). Machine readable tables and Posteriors from the RadVel fits are available here: http://stephenkane.net/rvfits.tarThe sensitivities of radial velocity (RV) surveys for exoplanet detection are extending to increasingly longer orbital periods, where companions with periods of several years are now being regularly discovered. Companions with orbital periods that exceed the duration of the survey manifest in the data as an incomplete orbit or linear trend, a feature that can either present as the sole detectable companion to the host star, or as an additional signal overlain on the signatures of previously discovered companion(s). A diagnostic that can confirm or constrain scenarios in which the trend is caused by an unseen stellar rather than planetary companion is the use of high-contrast imaging observations. Here, we present RV data from the Anglo-Australian Planet Search (AAPS) for 20 stars that show evidence of orbiting companions. Of these, six companions have resolved orbits, with three that lie in the planetary regime. Two of these (HD 92987b and HD 221420b) are new discoveries. Follow-up observations using the Differential Speckle Survey Instrument (DSSI) on the Gemini South telescope revealed that 5 of the 20 monitored companions are likely stellar in nature. We use the sensitivity of the AAPS and DSSI data to place constraints on the mass of the companions for the remaining systems. Our analysis shows that a planetary-mass companion provides the most likely self-consistent explanation of the data for many of the remaining systems.Peer reviewedFinal Accepted Versio

    XO-2b: Transiting Hot Jupiter in a Metal-rich Common Proper Motion Binary

    Full text link
    We report on a V=11.2 early K dwarf, XO-2 (GSC 03413-00005), that hosts a Rp=0.98+0.03/-0.01 Rjup, Mp=0.57+/-0.06 Mjup transiting extrasolar planet, XO-2b, with an orbital period of 2.615857+/-0.000005 days. XO-2 has high metallicity, [Fe/H]=0.45+/-0.02, high proper motion, mu_tot=157 mas/yr, and has a common proper motion stellar companion with 31" separation. The two stars are nearly identical twins, with very similar spectra and apparent magnitudes. Due to the high metallicity, these early K dwarf stars have a mass and radius close to solar, Ms=0.98+/-0.02 Msolar and Rs=0.97+0.02/-0.01 Rsolar. The high proper motion of XO-2 results from an eccentric orbit (Galactic pericenter, Rper<4 kpc) well confined to the Galactic disk (Zmax~100 pc). In addition, the phase space position of XO-2 is near the Hercules dynamical stream, which points to an origin of XO-2 in the metal-rich, inner Thin Disk and subsequent dynamical scattering into the solar neighborhood. We describe an efficient Markov Chain Monte Carlo algorithm for calculating the Bayesian posterior probability of the system parameters from a transit light curve.Comment: 14 pages, 10 Figures, Accepted in ApJ. Negligible changes to XO-2 system properties. Removed Chi^2 light curve analysis section, and simplified MCMC light curve analysis discussio

    Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25

    Full text link
    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive
    corecore