12 research outputs found

    Impact de l’insuffisance rĂ©nale chronique sur les transporteurs de glucose et les effets subsĂ©quents sur la rĂ©sistance Ă  l’insuline

    Full text link
    Parmi l’ensemble des dĂ©sordres mĂ©taboliques retrouvĂ©s en insuffisance rĂ©nale chronique (IRC), la rĂ©sistance Ă  l’insuline demeure l’un des plus importantes Ă  considĂ©rer en raison des risques de morbiditĂ© et de mortalitĂ© qu’elle engendre via les complications cardiovasculaires. Peu d’études ont considĂ©rĂ© la modulation de transporteurs de glucose comme mĂ©canisme sous-jacent Ă  l’apparition et Ă  la progression de la rĂ©sistance Ă  l’insuline en IRC. Nous avons explorĂ© cette hypothĂšse en Ă©tudiant l’expression de transporteurs de glucose issus d’organes impliquĂ©s dans son homĂ©ostasie (muscles, tissus adipeux, foie et reins) via l’utilisation d’un modĂšle animal d’IRC (nĂ©phrectomie 5/6e). La sensibilitĂ© Ă  l’insuline a Ă©tĂ© dĂ©terminĂ©e par un test de tolĂ©rance au glucose (GTT), oĂč les rĂ©sultats reflĂštent une intolĂ©rance au glucose et une hyperinsulinĂ©mie, et par les Ă©tudes de transport au niveau musculaire qui tĂ©moignent d’une diminution du mĂ©tabolisme du glucose en IRC (~31%; p<0,05). La diminution significative du GLUT4 dans les tissus pĂ©riphĂ©riques (~40%; p<0,001) peut ĂȘtre Ă  l’origine de la rĂ©sistance Ă  l’insuline en IRC. De plus, l’augmentation de l’expression protĂ©ique de la majoritĂ© des transporteurs de glucose (SGLT1, SGLT2, GLUT1; p<0,05) au niveau rĂ©nal en IRC engendre une plus grande rĂ©absorption de glucose dont l’hyperglycĂ©mie subsĂ©quente favorise une diminution du GLUT4 exacerbant ainsi la rĂ©sistance Ă  l’insuline. L’élĂ©vation des niveaux protĂ©iques de GLUT1 et GLUT2 au niveau hĂ©patique tĂ©moigne d’un dĂ©faut homĂ©ostatique du glucose en IRC. Les rĂ©sultats jusqu’ici dĂ©montrent que la modulation de l’expression des transporteurs de glucose peut ĂȘtre Ă  l’origine de la rĂ©sistance Ă  l’insuline en IRC. L’impact de la parathyroĂŻdectomie (PTX) sur l’expression du GLUT4 a Ă©tĂ© Ă©tudiĂ© Ă©tant donnĂ© que la PTX pourrait corriger l’intolĂ©rance au glucose en IRC. Nos rĂ©sultats dĂ©montrent une amĂ©lioration de l’intolĂ©rance au glucose pouvant ĂȘtre attribuable Ă  la moins grande rĂ©duction de l’expression protĂ©ique du GLUT4 dans les tissus pĂ©riphĂ©riques et ce malgrĂ© la prĂ©sence d’IRC. L’excĂšs de PTH, secondaire Ă  l’hyperparathyroĂŻdie, pourrait alors ĂȘtre Ă  l’origine de la rĂ©sistance Ă  l’insuline en IRC en affectant l’expression du GLUT4. L’IRC partage de nombreuses similitudes avec le prĂ©diabĂšte quant aux dĂ©faillances du mĂ©tabolisme du glucose tout comme l’hyperinsulinĂ©mie et l’intolĂ©rance au glucose. Aucune Ă©tude n’a tentĂ© d’évaluer si l’IRC pouvait ultimement mener au diabĂšte. Nos rĂ©sultats ont par ailleurs dĂ©montrĂ© que l’induction d’une IRC sur un modĂšle animal prĂ©disposĂ© (rats Zucker) engendrait une accentuation de leur intolĂ©rance au glucose tel que constatĂ© par les plus hautes glycĂ©mies atteintes lors du GTT. De plus, certains d’entre eux avaient des glycĂ©mies Ă  jeun dont les valeurs surpassent les 25 mmol/L. Il est alors possible que l’IRC puisse mener au diabĂšte via l’évolution de la rĂ©sistance Ă  l’insuline par l’aggravation de l’intolĂ©rance au glucose.Of all metabolic disorders found in chronic renal failure (CRF), insulin resistance remains one of the most important to consider because of the risk of morbidity and mortality it causes via cardiovascular complications. Few studies have considered the modulation of glucose transporters as the mechanism underlying the emergence and progression of insulin resistance in CRF. We explored this hypothesis by studying the expression of glucose transporters from organs involved in its homeostasis (muscle , fat , liver and kidneys) through the use of an animal model reflecting CRF (5/6th nephrectomy). The insulin sensitivity was determined by a glucose tolerance test (GTT), where the results reflect glucose intolerance and hyperinsulinemia , and transport studies in muscle show a decrease in glucose uptake in CRF ratss (~31% , p<0.05). The significant decrease in GLUT4 in peripheral tissues (~40%, p<0.001) may be the cause of insulin resistance in CRF. Furthermore, increased protein expression of the majority of glucose transporters (SGLT1, SGLT2, GLUT1, p<0.05) within the kidney in CRF causes greater glucose reabsorption in which consequential hyperglycemia promotes a decrease in GLUT4 thus exacerbating insulin resistance. Elevated protein levels of GLUT1 and GLUT2 in the liver reflects an impaired glucose homeostasis in CRF. The results show that the modulation of the expression of glucose transporters may be responsible for insulin resistance in CRF. The impact of parathyroidectomy (PTX) on the expression of GLUT4 was studied since PTX is known to correct glucose intolerance in CRF. Our results show an improvement in glucose intolerance which may be due to less reduction of GLUT4 protein expression in peripheral tissues despite the presence of CRF. The excess of PTH, linked to secondary hyperparathyroidism, could be held responsible to the presence of insulin resistance in CRF by affectant GLUT4 expression. CRF shares many similarities with prediabetes in regards to impaired glucose metabolism such as hyperinsulinemia and glucose intolerance. No studies have attempted to assess whether CRF could lead to diabetes. Our results demonstrated that the induction of CRF in a predisposed animal model (Zucker rats) provoked greater glucose intolerance as evidenced by the highest blood glucose levels reached in the GTT. In addition, some of them had fasting blood glucose levels whose values exceeded 25 mmol/L. It is therefore possible that CRF can lead to diabetes through the evolution of insulin resistance by the worsening of glucose intolerance

    Mechanism of insulin resistance in a rat model of kidney disease and the risk of developing type 2 diabetes.

    Get PDF
    International audienceChronic kidney disease is associated with homeostatic imbalances such as insulin resistance. However, the underlying mechanisms leading to these imbalances and whether they promote the development of type 2 diabetes is unknown. The effect of chronic kidney disease on insulin resistance was studied on two different rat strains. First, in a 5/6th nephrectomised Sprague-Dawley rat model of chronic kidney disease, we observed a correlation between the severity of chronic kidney disease and hyperglycemia as evaluated by serum fructosamine levels (p<0.0001). Further, glucose tolerance tests indicated an increase of 25% in glycemia in chronic kidney disease rats (p<0.0001) as compared to controls whereas insulin levels remained unchanged. We also observed modulation of glucose transporters expression in several tissues such as the liver (decrease of ≈40%, p≀0.01) and muscles (decrease of ≈29%, p≀0.05). Despite a significant reduction of ≈37% in insulin-dependent glucose uptake in the muscles of chronic kidney disease rats (p<0.0001), the development of type 2 diabetes was never observed. Second, in a rat model of metabolic syndrome (Zucker Leprfa/fa), chronic kidney disease caused a 50% increased fasting hyperglycemia (p<0.0001) and an exacerbated glycemic response (p<0.0001) during glucose challenge. Similar modulations of glucose transporters expression and glucose uptake were observed in the two models. However, 30% (p<0.05) of chronic kidney disease Zucker rats developed characteristics of type 2 diabetes. Thus, our results suggest that downregulation of GLUT4 in skeletal muscle may be associated with insulin resistance in chronic kidney disease and could lead to type 2 diabetes in predisposed animals

    Klf6, a novel regulator of ÎČ3-cell mass, insulin secretion, and identity

    No full text

    Glucose and insulin responses to an intraperitoneal glucose tolerance test.

    No full text
    <p><b>(A)</b> Glucose and <b>(B)</b> Insulin responses to an intraperitoneal glucose tolerance test (2g/kg) performed on SD rats at Day 28 following a 16 hours fast. <b>(C)</b> Glucose and <b>(D)</b> Insulin responses to an intraperitoneal glucose tolerance test (1.5g/kg) performed on Zucker Lepr<sup>fa/fa</sup> rats at Day 28 following a 16 hour fast. Values are mean ± S.D. n = 10 for each group. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 as compared to CTL rats. Area under the curve is presented as percentage of controls, on the right corner of each graph.</p

    Glucose transporters protein expression in selected organs of CKD rats.

    No full text
    <p>Protein levels are expressed in densitometry units. The densitometry units measured for glucose transporters were normalized to their respective loading control (ÎČ-actin: liver; GAPDH: muscles and adipose tissues; villin-1: kidneys) values. The normalized densitometry units of control rats were arbitrarily defined as 100%. The graph shows the mean expression in CKD rats expressed as percentage of CTL ± S.D of at least 5 rats in each group. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 as compared to CTL rats. Protein levels of glucose transporters in the <b>(A)</b> Kidneys and liver of SD rats, <b>(B)</b> Skeletal muscle and white adipose tissue of SD rats. <b>(C)</b>. Skeletal muscle and white adipose tissue in Zucker Lepr<sup>fa/fa</sup> rats. <b>(D)</b>. Representative Western blots for each glucose transporter. Each blot contains examples of three CKD (left) and three CTL (right) SD rats. Measurements at Day 42.</p

    Time of glycosuria apparition in Zucker Lepr<sup>fa/fa</sup> rats.

    No full text
    <p>The graph shows the proportion of rats with glycosuria as confirmed by a positive Diastix<sup>ℱ</sup> (Bayer) test on two consecutive days for 15 Zucker Lepr<sup>fa/fa</sup> rats per group.</p

    <i>Ex vivo</i> accumulation of radio-labeled 2-deoxyglucose in muscles.

    No full text
    <p>Uptake of radio-labeled 2-deoxyglucose in CTL and CKD rat muscles expressed as insulin response vs. basal condition. Basal condition of each muscle was arbitrarily defined as 1,0. Data are expressed as fold increase (mean) ± S.D for at least 5 rats per group. ***, p<0.001; ****, p<0.0001 as compared to CTL rats. <b>(A)</b> Sprague-Dawley rats and <b>(B)</b> Zucker Lepr<sup>fa/fa</sup> rats. Measurements at Day 42.</p

    Correlation between serum fructosamine and creatinine in CTL and CKD rats.

    No full text
    <p>Fructosamine concentration expressed as a ratio of fructosamine reported on total protein content in serum, versus creatininemia of <b>(A)</b> n = 26 SD rats and <b>(B)</b> n = 37 Zucker Lepr<sup>fa/fa</sup> rats. Measurements at Day 21.</p

    Glucose transporters mRNA expression in selected organs of CKD rats.

    No full text
    <p>mRNA encoding glucose transporters in CTL and CKD rats in the indicated tissues were measured by quantitative Real-Time PCR. mRNA levels are expressed in relative quantities and calculated using the ΔΔCT method [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0176650#pone.0176650.ref033" target="_blank">33</a>] with their respective housekeeping gene (Villin-1 for kidneys, ÎČ-actin for liver and GAPDH for muscles and adipose tissues). Data was normalized to the mean relative quantity of each gene in CTL rats. The graph shows the mean expression in CKD rats expressed as a percentage of controls ± S.D. of at least 10 rats in each group. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 as compared to CTL rats. <b>(A)</b> Glucose transporters mRNA expression in the kidney and liver of SD rats. <b>(B)</b> GLUT1 and GLUT4 mRNA expression in skeletal muscle and white adipose tissue of SD rats. <b>(C)</b> GLUT1 and GLUT4 mRNA expression in skeletal muscle and white adipose tissue of Zucker Lepr<sup>fa/fa</sup> rats. Measurements at Day 42.</p
    corecore