5,656 research outputs found

    Real single ion solvation free energies with quantum mechanical simulation

    Full text link
    Single ion solvation free energies are one of the most important properties of electrolyte solutions and yet there is ongoing debate about what these values are. Only the values for neutral ion pairs are known. Here, we use DFT interaction potentials with molecular dynamics simulation (DFT-MD) combined with a modified version of the quasi-chemical theory (QCT) to calculate these energies for the lithium and fluoride ions. A method to correct for the error in the DFT functional is developed and very good agreement with the experimental value for the lithium fluoride pair is obtained. Moreover, this method partitions the energies into physically intuitive terms such as surface potential, cavity and charging energies which are amenable to descriptions with reduced models. Our research suggests that lithium's solvation free energy is dominated by the free energetics of a charged hard sphere, whereas fluoride exhibits significant quantum mechanical behavior that cannot be simply described with a reduced model.Comment: 13 pages, 4 figure

    Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Get PDF
    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation (DFT-MD) and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry (CHA) for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.Comment: 28 pages, 5 figure

    On the existence of infinitely many closed geodesics on orbifolds of revolution

    Get PDF
    Using the theory of geodesics on surfaces of revolution, we introduce the period function. We use this as our main tool in showing that any two-dimensional orbifold of revolution homeomorphic to S^2 must contain an infinite number of geometrically distinct closed geodesics. Since any such orbifold of revolution can be regarded as a topological two-sphere with metric singularities, we will have extended Bangert's theorem on the existence of infinitely many closed geodesics on any smooth Riemannian two-sphere. In addition, we give an example of a two-sphere cone-manifold of revolution which possesses a single closed geodesic, thus showing that Bangert's result does not hold in the wider class of closed surfaces with cone manifold structures.Comment: 21 pages, 4 figures; for a PDF version see http://www.calpoly.edu/~jborzell/Publications/publications.htm
    • …
    corecore