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Determining the solvation free energies of single ions in water is one of the most fundamental prob-
lems in physical chemistry and yet many unresolved questions remain. In particular, the ability to
decompose the solvation free energy into simple and intuitive contributions will have important impli-
cations for models of electrolyte solution. Here, we provide definitions of the various types of single
ion solvation free energies based on different simulation protocols. We calculate solvation free ener-
gies of charged hard spheres using density functional theory interaction potentials with molecular
dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear
response) model. We show that using uncorrected Ewald summation leads to unphysical values for the
single ion solvation free energy and that charging free energies for cations are approximately linear
as a function of charge but that there is a small non-linearity for small anions. The charge hydration
asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analo-
gous real ions. This suggests that real ions, particularly anions, are significantly more complex than
simple charged hard spheres, a commonly employed representation. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4994912]

I. INTRODUCTION

There is no consensus in the literature regarding the sol-
vation free energies of individual ions in water.1–3 Estimates
of these quantities are spread over a range of 50 kJ mol�1.
In addition to this, the size of the various contributions to
these solvation free energies remains largely unknown. This
significantly hinders our understanding of the many impor-
tant systems where electrolyte solutions play a central role
because knowledge of these values is vital for testing and
parametrizing theoretical models of electrolyte solutions.1,4,5

Surprisingly, only a single study of the solvation free energy of
ions in water using density functional theory interaction poten-
tials with molecular dynamics simulation (DFT-MD) has been
published.6 Rather than tackling the solvation free energy of
real ions in water directly, it is useful to consider the solva-
tion free energy of the simplest possible model of an ion: a
charged hard sphere. The solvation free energy of a charged
hard sphere can be exactly partitioned into a cavity forma-
tion free energy and an electrostatic charging free energy. It
is useful to study this simple model of an ion as the solvation
free energies of real ions include a significant contribution
from quantum mechanical interactions such as dispersion and
exchange terms. The role of the pure electrostatic interaction
is therefore obscured by these terms, which prevents physical
insight. In addition, these interactions are necessarily treated at
a highly approximate level with classical-MD and continuum
solvent models. By calculating the solvation free energy of a
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charged hard sphere, these terms are excluded and a more direct
comparison with these simpler models is possible allowing
us to test and parameterize them. Any differences between
classical-MD and DFT-MD in the solvation free energies of
charged hard spheres cannot be attributed to issues with the
Lennard-Jones parameters but must be ascribable to the incor-
rect response of water to the electric field of the ion. An
example of this is the fundamental concept of the charge
hydration asymmetry (CHA).7 The CHA refers to the differ-
ent response of water to a positive charge versus a negative
charge of the same size and it is important that models of
water accurately reproduce it. Unfortunately, we still have
very little idea of how large this asymmetry is for real water.
This is confounded in real systems because of the quantum
mechanical interactions with the ion, namely, dispersion and
exchange interactions, which obscure the size of the CHA.
This quantity can only be properly determined using the
framework of quantum mechanical simulation of charged hard
spheres in water, i.e., DFT-MD. Studying these model ions also
affords an unambiguous route to examine the linear response
behavior of ab initio water allowing direct comparison to
the Born model and other reduced treatments of electrolyte
properties.

Before we can answer the aforementioned questions, there
is a more fundamental issue which must be resolved that
provides an additional motivation for studying charged hard
spheres rather than real ions. There is substantial confusion
and debate in the literature regarding the very definition of sin-
gle ion solvation free energies. This stems from the fact that
single ion solvation free energies rely on a reference for the
zero of the electrostatic potential. If two different but correct
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methods assume a different zero, then the single ion solvation
free energies will differ by q∆φ. This ambiguity is not present
for cation-anion pairs due to the obvious cancellation. More-
over, the precise zero of the electrostatic potential for a given
theoretical or experimental method is often unclear as it can
depend sensitively on the simulation protocol or other assump-
tions. This problem is amplified due to a lack of uniformity in
the literature concerning terminology and notation for the rele-
vant quantities. This confusion is the main reason for the large
spread in estimates of these quantities in the literature.

Many “extra thermodynamic assumptions” have been
used to try and determine single ion solvation free energies.
The cluster pair approximation (CPA) and the tetraphenylarso-
nium tetraphenylborate (TATB) assumption are the two most
well known examples. The first uses the formation free ener-
gies of gas phase ion-water clusters to determine a value,8,9 and
the second assumes the equivalence of two large hydrophobic
ions to evenly split the solvation free energy.10 Unfortunately,
these efforts have not resolved the issue.11–14

Purely theoretical methods do not give consistent values
for these quantities. For instance, one common approach is
to calculate the free energy of forming small ion-water clus-
ters and solvating them in a dielectric continuum.15–18 One
issue is that it is not obvious what the zero of the electro-
static potential is with these calculations. Another is that the
solvation free energies determined with these methods differ
by 50 kJ mol�1 or more depending on which thermodynamic
cycle is used and there is debate about what the best cycle
is.17–20 If a water cluster cycle is used, agreement with the CPA
based values is achieved for both cations and anions.15,17,21

An alternative cycle treats the water molecules individually
rather than as a cluster when determining their desolvation
energy. This approach relies on knowing a coordination num-
ber, and it results in values that agree with Marcus’ solvation
free energies for cations,22–24 but for the hydroxide anion, the
solvation free energy differs by approximately 50 kJ mol�1

from Marcus’ value.22 Reference 22 also reports single ion
solvation free energies calculated by inserting a cluster into an
explicit solvent rather than into a dielectric continuum. How-
ever, because these calculations use Ewald summation, they
need to be corrected as discussed below.

Classical-MD appears to show significant model depen-
dence on both surface potentials25 and solvation free energies.4

This is not necessarily surprising; these models are mainly
parametrized and compared against bulk properties of aque-
ous solutions and so they are not necessarily reliable at the
highly asymmetric environment of the air-water interface.
In addition, the simple functional forms used for the inter-
action potentials must describe both classical electrostatic
and quantum mechanical interactions, which is difficult to
achieve.

In this work, we aim to use state-of-the-art DFT-MD tech-
niques to establish the electrostatic solvation free energies of
charged hard spheres in water and compare with the Born
model and with classical-MD. We investigate monovalent
charged hard spheres of the size relevant to small monatomic
ions and find that the CHA for DFT water is significantly
larger than that obtained for water modeled with classical-MD.
This finding points to an oversimplification of classical-MD.

A mapping between different definitions of solvation free
energies is constructed allowing comparison to other defini-
tions and notations in the literature.

II. THEORY AND DEFINITIONS
A. Solvation free energies

The key quantity that we need to calculate is the “excess
chemical potential” of an ion X in solution given by

µ∗X = −kBT ln
〈
e−βUXS

〉
0
− EVac

X . (1)

The ion is at a fixed position, and the subscript 0 indicates
that there is no solute-solvent interaction in the statistical
averaging. UXS is the solute-solvent interaction energy and
is defined26,27 as UXS = UX,Ns − UNs , where UX,Ns is the
total energy of the ion and solvent system including the elec-
tronic energy of the ion and UNs gives the total energy of a
given water structure with only the water molecules present.
This expression is elaborated in Sec. A of the supplementary
material.

We can expand UXS for the case of a charged hard sphere
as

UXS = UCav + UPC, (2)

where UCav is a hard sphere interaction that excludes the oxy-
gen atoms of the water molecules from some spherical region.
We can then write the free energy of solvation (see Sec. B of
the supplementary material) as

µ∗X = −kBT ln
〈
e−βUCav

〉
0
− kBT ln

〈
e−βUPC

〉
UCav

= µ∗Cav + µ∗PC. (3)

We have dropped EVac
X as it is zero for a point charge with no

electrons. This partitioning is very useful as it simplifies the
statistical treatment required. This is why it is a key piece of
the quasi-chemical theory (QCT).28,29 We can estimate µ∗Cav
directly from simulation for cavities up to 3–4 Å with a given
water model by calculating the probability of cavity formation
with an equilibrium simulation,28

µ∗Cav = −kBT ln
〈
e−βUCav

〉
0
= −kBT ln p0(RCav), (4)

where p0(RCav) is the probability of finding a cavity of size
RCav in bulk water. The energy of forming the cavity has
been estimated on the basis of classical-MD and DFT-MD
calculations.30,31

UPC is the electrostatic interaction energy of the charge.
It is given by26 UPC = UPC,Ns −UNs , i.e., it is the difference in
energy of a water structure with only water molecules present
and with the water molecules and a point charge present and
should only be evaluated when combined with a repulsive term.
It is straightforward to calculate µ∗PC by calculating the energy
change as the charge is gradually turned on in increments of
0.1 or 0.05 e. The relevant expressions are provided in Sec. C
of the supplementary material. This expression assumes that
the electrostatic potential is defined to be zero in the vapor
phase infinitely far away from the air-water interface. We refer
to this as the “real” solvation free energy (µ∗X = µ∗Real

X ). It
corresponds to the actual (real) free energy change on tak-
ing an ion and moving it across the real air-water interface.
The air-water interface creates a jump in the electrostatic

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
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FIG. 1. A schematic of the contributions to the electro-
static potential for a cavity in water (not to scale) for
both DFT and SPC/E water. The difference between the
four different definitions of the solvation free energy is
shown by labeling the corresponding zero of the poten-
tial for each. The Ewald values assume that the zero of
the potential is slightly below the average potential inside
bulk water. This is because the cavity lowers the average
potential inside the cell slightly.

potential (see Fig. 1). This is called the total surface potential.
In order to determine the zero of the electrostatic potential in
the vapor phase relative to the aqueous phase, it is important
to have a reliable treatment of the air-water interface in order
to properly estimate this surface potential. Any theoretical or
experimental estimates of single ion solvation free energies
that do not consider the air-water interface are not equivalent
to the “real” solvation free energies as defined here. There is
currently no direct unambiguous experimental determination
of this air-water surface potential. Different experiments give
widely varying results, and it is often unclear how the exper-
imental measurement is related to the microscopic properties
of the solution.1

Recently several studies have examined the surface poten-
tial of water with DFT-MD.25,32–34 Particularly important is
Ref. 25, which gives the contributions to the potential inside
a hard sphere cavity in water with revPBE-D3 and BLYP-
D2. This study included the effect of the air-water interface
by simulating a large water slab. This work makes it possi-
ble to determine the contributions to the solvation free energy
of single ions in water from the surface potential. A natural
extension of Ref. 25 is to place a point charge inside the hard
sphere cavity and look at the response of water to the presence
of the charge. Using a water slab configuration for this calcula-
tion is problematic as the Coulomb interaction is long ranged
and significantly perturbs the orientation of water molecules
at the air-water interface in the finite simulation cell. This
approach is therefore not useful to obtain the potentials inside
a charged cavity and thus accurately determine solvation free
energies. To circumvent this issue, it is necessary to perform
the calculation of the charging free energies using periodic
boundary conditions (PBCs) under bulk solvation conditions,
namely, where no air-water interface is present. Ewald summa-
tion is an extremely useful method for treating electrostatics
in PBCs. However, there are complications associated with
any treatment of electrostatics in PBCs such as correcting for
finite size effects and determining the zero of the electrostatic
potential. As a result, single ion solvation free energies cal-
culated using Ewald summation must be carefully corrected
before they can be considered physically meaningful. These
corrections have been extensively outlined in the context of
classical-MD studies,35–37 and it is relatively straightforward
to apply these expressions to DFT-MD simulations.

Decomposing the solvation free energy into one contri-
bution from local water molecule interactions and another
from the surface potential created by the air-water interface
is useful for providing single ion solvation free energies that
can be used to parametrize simpler models of electrolyte
solutions and for understanding ion-water interactions. Unfor-
tunately, there is no clear accepted method for doing this
in the literature. In fact, there are at least three alternative
definitions of the single ion solvation free energy with the
surface potential removed which have been proposed. These
different definitions correspond to different choices of the
zero of the electrostatic potential. Differences in notation and
nomenclature have made it a challenge to understand how the
aforementioned different definitions are related. Here we aim
to define and relate different approaches to computing sin-
gle ion solvation free energies for direct and unambiguous
comparison.

B. The role of the surface potential in single ion
solvation free energies

To understand the different definitions of solvation free
energies, it is necessary to first understand the contributions to
the surface potential of a distant liquid-vapor interface. Com-
prehensive explanations of these contributions are available in
the literature.1,38–41 In brief, there is a dipolar surface potential,
which is given by

φD = −ε
−1
0

∫ zv

zl

dzPz(z), (5)

where Pz(z) is the z component of the average dipole density.
Hünenberger and Reif1 refer to this dipolar surface potential
as χM . It gives the change in the electrostatic potential caused
by the average orientation and electronic polarization of water
molecules at the air-water interface. The second contribution
arises from the fact that there is a significant average potential
inside a water molecule. Mathematically, it is given by the trace
of the quadrupole moment of the water molecules. We refer to
this second contribution as the Bethe potential and refer to it
with the symbol φB. In System International (SI) units, for a
point charge model, it is given by

φB = −
1

6V ε0

∑
i

q〈r2〉i, (6)



161716-4 Duignan et al. J. Chem. Phys. 147, 161716 (2017)

or for a continuous charge distribution, ρ(r), it is given by

φB = −
1

6V ε0

∑
i

∫
d3rρ(r)r2, (7)

where V is the volume of the simulation box and the sum is over
each atom in the box. The procedure for calculating this and
the values for this quantity are given below. Leung32 uses the
notation φq to refer to this quantity, whereas Hünenberger and
Reif1 denote it as the exclusion potential, −ξ, although it has
opposite sign. It is also referred to as the orientational disorder
limit (ODL) correction (−ΦODL).35,42 The Bethe potential can
be calculated solely from a bulk simulation of water, whereas
the dipolar surface potential relies on an accurate simulation
of the air-water interface.

The sum of these two terms gives the total surface potential
of the air-water interface,

∆φ = φB + φD = −ε
−1
0

∫ zv

zl

dzρ(z)z, (8)

where ρ(z) is the average charge distribution as a function of
position across the interface. For ab initio water treated with all
electrons and no pseudo-potentials, this is a real physical quan-
tity of around 4 V. It is much larger than most experimental esti-
mates of the surface potential because almost all experiments
do not probe the internal potential of the water molecules. Elec-
tron holography is a notable exception where a large potential
of this size is confirmed.33 However, for most classical water
models, this total surface potential is entirely unphysical as the
average electrostatic potential inside a point charge model of
water is opposite in sign compared with the average electro-
static potential inside real water. This is due to the large neg-
ative point charges that classical water models generally use.
The total surface potential is often the only one reported in cal-
culations of the surface potential.43,44 Considering that the two
contributions to the total surface potentials have very different
physical origins, it would provide more insight to provide them
separately.

This partitioning into a dipolar and Bethe potential
depends on the choice of the origin of the water molecule.
This origin dependence is given by

φshift
D = −

ρw〈µ · d〉
3ε0

, (9)

where d gives the change in the origin position. This expres-
sion is derived in Sec. D of the supplementary material and
is generally applicable to any non-rigid solvent molecule
including large flexible polymer molecules. This highlights
the limitation of a center dependent description of ion sol-
vation. In contrast to the dipolar and Bethe potentials, the
total surface potential does not depend on the choice of the
origin.

An alternative definition of the solvation free energy that
does not require an accurate treatment of the air-water inter-
face exists. Hünenberger and Reif1 refer to it as the intrinsic
solvation free energy, and it corresponds to the solvation free
energy that results if you subtract the dipolar surface potential
from the “real” solvation free energies,

µ∗Int
X = µ∗X − qIφD. (10)

More intuitively, the intrinsic solvation free energy corre-
sponds to choosing the zero of the electrostatic potential to
be in the vapor phase infinitely far away from the air-water
surface assuming that the molecules at the interface are isotrop-
ically oriented, i.e., φD = 0. The problem with this quantity is
that the notion of “isotropically oriented molecules” depends
on the choice of the molecular center for the same reason
that the dipolar surface potential depends on the choice of
the origin of the water molecule. Hence, the intrinsic solva-
tion free energies do as well. It has been shown1 that using
a molecular (M-type) based cutoff in the summation of the
Coulomb potential results in this definition of the intrinsic
solvation free energy. Using a molecular based cutoff effec-
tively creates an air-water surface with zero dipolar surface
potential (for the chosen water center). It has been shown
that using an M-type cutoff also results in solvation free
energies that depend on the choice of the water molecule’s
origin.45,46

Generally, surface potential calculations, including
Ref. 25, choose the oxygen atom to be the center of the water
molecule. With oxygen for the molecular center, a value of
0.48 V is determined for the dipolar surface potential based on
DFT-MD calculations.25 The standard choice of the oxygen
atom as the molecular center is arbitrary and chosen primarily
for computational convenience. As such the resulting intrinsic
solvation free energies are unlikely to carry any real physi-
cal significance and will only be useful for comparison with
other computational methods. It is not clear that there is any
means of determining what the best choice for the molecu-
lar center is. A potentially physically meaningful choice is
to place the origin at the center of nuclear charge, which is
the analog of the center of mass but with the mass replaced
by the nuclear charge. Using this choice, Eq. (9) gives an
increase in the Bethe potential of 0.14 V and a correspond-
ing decrease in the dipolar surface potential of 0.14 V. As a
result, the intrinsic solvation free energies of cations become
less negative, whereas the real and bulk quantities stay the
same.

Some researchers simply use Ewald summation to cal-
culate the ionic solvation free energies without correcting for
the surface potentials or finite size effects. Often these val-
ues are referred to as the intrinsic solvation free energies.43

However, it is useful to have a separate term for these values
in order to distinguish them from the intrinsic solvation free
energies defined above. We therefore refer to them as Ewald
solvation free energies. They are related to the “real” solvation
free energies by the following expression:

µ*Ewald
X = µ∗X − qIφD − qIφB + µEw-Corr. (11)

The Ewald values are the most commonly reported values in
molecular simulation studies.5,43,47–49 Ewald summation sets
the zero of the electrostatic potential to be the average potential
over one unit cell.35 This is an arbitrary definition of the zero
of the electrostatic potential as it depends on the internal struc-
ture of the water molecules and varies dramatically between
different representations of water. For example, there is a 4 V
difference between quantum and classical water models. The
details for the calculation of the Bethe potential and the val-
ues for the systems studied here are given in Sec. E of the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
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supplementary material. If an atom-based cutoff in the sum-
mation of the Coulomb interaction is used (P-type summa-
tion), then the resulting solvation free energies are equivalent
to the Ewald solvation free energies.36 When the raw ener-
gies calculated with Ewald summation are used in Eq. (1)
to calculate the solvation free energies, then there is an
additional correction (µEw-Corr) described in Sec. F of the
supplementary material. Reif and Hünenberger1,50 have pro-
vided extensive justification for why the Ewald solvation free
energies are not a useful concept. The most significant reason
is that they inherently include a large and arbitrary contri-
bution associated with the internal properties of the water
molecule.

The final type of single ion solvation free energy was
first defined by Beck.40 They are called the bulk solvation
free energies and assume that the electrostatic potential is
zero at a point at the center of an uncharged cavity carved
out of water. To define this quantity, we must introduce φC,
which is the average potential created inside a cavity due to
the average orientation of water molecules around that cav-
ity. It is defined mathematically in the supplementary material
of Ref. 25 in terms of a traceless multipole moment expan-
sion. Hünenberger and Reif1 refer to this as ζM . This potential
is essentially the difference between the electrostatic poten-
tial in a cavity and the potential in bulk water minus the
Bethe potential. As the cavity approaches macroscopic size,
φC must converge to −φD. As it is defined in terms of trace-
less multipole moments, φC does not depend on the Bethe
potential.

This then allows for the definition of the net potential,
which Beck refers to as φnp. Reference 25 refers to it as ΦHW.
It is given by ΦHW = φC + φD or equivalently φnp = φlp + φsp

in Beck’s notation. (Although note that φlp and φsp include
compensating contributions from the Bethe potential, i.e.,
φlp = φC + φB.) It corresponds to the difference in potential
between the vapor phase and a small cavity formed in water.
The bulk solvation free energies are then defined as

µ∗Bulk
X = µ∗X − qIΦ

HW. (12)

This net potential is inherently dependent on the size of the ion
and the nature of how it repels the water molecules, as such it
does not have a single value.25,51

C. The connection to Born theory

Equation (12) is useful because various approaches to
determining the solvation free energy do not include a con-
tribution from any surface potentials. The assumption that the
electrostatic potential is zero at the center of an uncharged cav-
ity in water implies that the solvation free energy of a charge
at the center of that cavity is purely quadratic in the charge,

i.e., it has no linear contribution, namely,
dµ∗Bulk

X
dq

����q→0
= 0.

Two important examples are the Born model and the TATB
assumption that both implicitly assume a net potential of zero.
Following Beck,40 it is appropriate to compare Born model
calculations with the bulk solvation free energies not the intrin-
sic values. Bulk solvation free energies are only useful if the
charging process follows linear response as only then is there
any point splitting the solvation free energy into a linear term

TABLE I. Surface potential definitions.

Type Expression

Dipolar φD = −ε−1
0 ∫

zv
zl

dzPz(z)

Bethe φB = − 1
6Vε0

∑
i q〈r2〉i

Cavity φC = see the supplementary material of Ref. 25
Net ΦHW = φC + φD

Total ∆φ = φD + φB = −ε
−1
0 ∫

zv
zl

dzρ(z)z

and a quadratic term with respect to the charge. Tables I–
III and Fig. 1 summarize the information provided in this
section.

In order to clarify the connection to Born theory, it is
useful to define an effective potential,

φeff (q) =
dµ∗X
dq
=

〈
φ0 +

φI (q)
2

+
q
2

dφI (q)
dq

〉
UCav+Uq

. (13)

This is derived in Sec. G of the supplementary material. This
expression allows us to use a Taylor expansion to write the
solvation free energy as

µ∗PC = qφeff (0) +
q2

2
dφeff

dq

�����q→0
+ O(q3). (14)

The second two terms in the brackets in Eq. (13) are propor-
tional to the charge and will go to zero as the charge goes to
zero. Hence, we can see that φeff (0) = 〈φ0〉UCav

. This is just
the net potential (ΦHW) assuming that we are calculating “real”
solvation free energies. It follows that the bulk free energies
are given by

µ∗Bulk
PC = µ∗PC − qΦHW =

q2

2
dφeff

dq

�����q→0
+ O(q3). (15)

Hence, the bulk solvation free energies correspond to the sol-
vation free energies with the linear term removed. The Born
equation is

µBorn = −
q2

8πεoRBorn

(
1 −

1
ε r

)
. (16)

Comparing this with Eq. (15) shows that the Born model
should be compared with the bulk solvation free energies. We
can equate these two expressions to derive an expression for the
Born radius that can be determined directly from simulation,

RBorn = −
1

4πεo

(
1 −

1
ε r

) (
dφeff

dq

)−1

. (17)

A valuable extension, not carried out here, would be to par-
tition UPC up into long- and short-range contributions using
local molecular field theory.52 References 53 and 54 are two
examples where this partitioning is performed for classical

TABLE II. Four types of solvation free energies.

Type Expression

Real µ∗X
Intrinsic µ∗Int

X = µ∗X − qIφD

Bulk µ∗Bulk
X = µ∗X − qIΦ

HW

Ewald µ∗Ewald
X = µ∗X − qIφD − qIφB + µEw-Corr

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
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TABLE III. Surface potential notations.

Remsing et al.25 Hünenberger and Reif1 Beck40 Simonson et al.42

φD χM . . . . . .
φB –ξ (exclusion potential) . . . −ΦM-sum

PBC or −ΦODL

∆φ = φD + φB χP φsp Φlv or ΦG (Galvani)
φC + φB ζP φlp . . .
φC ζM . . . . . .
ΦHW . . . φnp . . .

water models to provide physical insight. A new method of
carrying out this partitioning has recently been put forward
by Remsing and Weeks.55 This method begins by solvat-
ing a diffuse smooth Gaussian charge density in bulk water.
The advantage of this approach is that the solvation of the
Gaussian is a linear process that can be estimated analyti-
cally using dielectric continuum theory. However, to finish
the process, the Gaussian must be collapsed down to a point
charge, which is a complex non-linear process and so is diffi-
cult to evaluate with simulation. In contrast, as shown below,
simply turning a charge on in a cavity shows only small
non-linearities.

D. Caveats

The single ion solvation free energies calculated here
assume that the ions are in the insulating phase. The complex-
ity of properly treating the electrolyte solution as a conductor
has been discussed in Ref. 56. Because conductors are subject
to the electro-neutrality condition, two electrolyte solutions
in equilibrium can produce a potential of the phase that is
fundamentally different from the surface potentials discussed
here.56,57 There is disagreement in the literature about what
the potential of the phase goes to in the limit of infinite dilu-
tion. Reference 57 uses the canonical distribution which is
appropriate for real finite Coulomb systems58 and shows that
the potential of the phase goes to zero in the limit of infi-
nite dilution. Reference 56 takes a different position but does
not explicitly derive the potential of the phase by minimiz-
ing the Helmholtz free energy of a finite system as Ref. 57
does.

A reviewer has raised the concern that the single ion
solvation free energies defined here and elsewhere are in vio-
lation of the Gibbs-Guggenheim principle (GGP),59 which
states that the electrical potential difference between two
regions of different chemical composition cannot be measured.
Reference 59 states that real single ion solvation free energies
are obtainable from experimental measurements subject to cer-
tain reasonable assumptions which do not violate the GGP such
as that “single ion activity coefficients are equal to the (mea-
surable) mean ionic activity coefficients for the electrolyte.”
The experimental accessibility of the real single ion solva-
tion free energies is also discussed extensively in Sec. 4.5.2 of
Ref. 1.

The real single ion solvation free energies are therefore a
physically meaningful and measurable quantity. The intrinsic
and bulk solvation free energies can be defined explicitly in
statistical mechanical terms, but in accordance with the GGP, it
is not clear that they correspond to any physically measurable

process as they are defined in terms of surface potentials. These
values are still useful conceptually as they provide a means
of comparing different theoretical methods at an equivalent
level. For example, intrinsic solvation free energies calculated
with DFT-MD and classical-MD can be compared assuming
that the same molecular origin is used. An additional caveat
is that the “real” solvation free energy as defined here cannot
be straightforwardly generalized to situations where the air-
water interface is unstable such as water above the critical
point.

III. CALCULATION DETAILS

The system contained 96 water molecules and a hard
sphere with a charge in the center of a 14.33 Å3 supercell.
To determine the box size, we used the expression

L =

(
Nw

ρw
+

4π
3

R3
I

)−3

, (18)

which gives 14.3 Å for both a 2 Å and a 2.6 Å cavity. NPT
simulations were run with the uncharged 2 Å cavity present to
test this choice of the box size. The revPBE-D3 simulations had
an average of 14.3 Å agreeing with this estimate. The BLYP-
D2 simulations were slightly lower at 14.0 Å. The revPBE-D3
functional is believed to give a better estimate of the density of
bulk water, and so 14.3 Å was used for all the NVT calculations
so that the effect of the change in the density with the functional
was not included.

To model a charged hard sphere inCP2K, we used a hydro-
gen atom with its core charge scaled to the desired value. No
basis functions are placed on the hydrogen atom as otherwise
electrons will transfer to it.

The hydrogen atom sits at the center of a hard sphere
repulsive interaction that acts only on the oxygen atoms and is
given, in a.u., by

UCav =
∑

O

1 − tanh ((rXO − RCav)/0.05) , (19)

where rXO is the ion oxygen distance and RCav is the hard
sphere (cavity) radius.

To calculate the Bethe potentials, we chose the oxygen
atom to be the center of the water molecule for consistency with
Ref. 25. Equation (6) was used to calculate the contribution
from the hydrogen atoms and from the electrons where the
positions of the electron pairs were taken to be the location
of the Wannier centers. The Wannier spreads25,60 were then
added to account for the finite spread of the electron pairs. The
contribution from the spatial spread of the pseudo-potentials
was estimated using Eq. (7).

The Ewald solvation free energies were calculated using
the raw energy difference output from CP2K. The energy dif-
ferences were used in Eqs. (8) and (9) of the supplementary
material and were then corrected using Eq. (11) to calcu-
late the “real” solvation free energy. Equations (10) and (12)
were then used to calculate the intrinsic and bulk solvation
free energies, respectively. The Ewald correction requires a
value for the size of the ion. Based on the recommendation in
Ref. 61, this is given best by the mean of the peak position

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
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in the ion-oxygen radial distribution function (RDF) and the
Goldschmidt in-crystal radii. This results in values of 1.41,
2.01, and 2.09 for lithium, fluoride, and potassium, respec-
tively, where we have used the experimental peak position and
crystal radii given in Ref. 62.

We can estimate the net potentials using the Hartree poten-
tial calculated in CP2K. We take the value at the center of
the cavity and then add the Bethe and dipolar potentials to
arrive at the real net potential properly referenced to the vapor
phase.

The NVT simulations (at 300 K) were performed under
PBCs using the CP2K simulation suite (http:www.cp2k.org)
with the QuickStep module for the DFT calculations.63 Shorter
range double zeta basis sets optimized for the condensed
phase64 were used in conjunction with Goedecker-Teter-
Hutter (GTH) pseudopotentials65 and a 400 Ry cutoff for
the auxiliary plane wave basis. A Nosé–Hoover thermostat
was attached to every degree of freedom to ensure equilibra-
tion.66 Two different DFT functionals were used: one was the
Becke exchange and correlation due to Lee, Yang, and Parr
(BLYP)67,68 and the other was the revised Perdew, Burke, and
Ernzerhof (revPBE).69,70 The D2 and D3 dispersion correc-
tions due to Grimme71,72 were used for BLYP and revPBE,
respectively. A 0.5 fs time step was used. The energies were
accumulated for ≈12 ps after ≈3 ps of equilibration for each
charge increment. We use the standard Ewald summation
method to treat the electrostatics as implemented in CP2K and
described in Ref. 63 and in the CP2K manual. No alternatives
were considered or tested.

The determination of the error is very challenging due
to the highly correlated nature of the data combined with
the short trajectories used and the fact that the solvation free
energies depend on the fluctuations of the energy not just on
the average, and so blocking or Monte Carlo bootstrapping
methodologies are ineffective. We therefore use a more heuris-
tic approach and simply take the difference in the energy of
charging vs. decharging the ions as an estimate of the uncer-
tainty for each step of the charging process. The propagation
of these errors provides the estimate for the uncertainty in
the total Ewald solvation free energies given in Table VI.
The other sources of error which were considered were the
following: first, how the solvation free energy of reasonably
sized subsets of the data varies; second, how the data con-
verge as the length of the trajectory is increased; and third,
what the effect of increasing the equilibration time is. These
errors were all smaller than the uncertainty determined using
the difference between charging and decharging. The prob-
ability distributions of the energy and the potential at the
center of the uncharged cavity for some representative cases
are shown in Sec. H of the supplementary material, indicat-
ing that any non-Gaussian behavior is relatively small and
should not affect the results. Reference 73 has shown that
higher order cumulants of the cavity potential fluctuations can
make significant contributions to the ionic solvation free ener-
gies. There is an additional source of error associated with
the choice of the radius of the ion in the expression for the
finite size correction [Eq. (18) of the supplementary material].
Reif and Hünenberger61 claim that this error is no larger than
1 kJ mol�1. The uncertainties do not account for the uncertainty

associated with the physical approximations made to perform
the calculations such as the Born-Oppenheimer approximation
with classical motion for the nuclei or the use of generalized
gradient corrected functionals with pseudo-potentials for the
electronic energy. Reference 74 indicates that nuclear quantum
effects are reasonably small (≈4 kJ mol�1) for these systems
although confirmation with path integral DFT-MD should be
performed.

IV. RESULTS AND DISCUSSION

The cavity formation energy can be estimated straightfor-
wardly by looking at the cavity formation probability in bulk
water. This has been done before for DFT-MD simulation.30

For the small cavities studied here, classical-MD31 appears to
give a reasonable estimate of this contribution. Because the
focus of this work is the charging free energies and this term
is independent of the charge, we do not provide an estimate of
it here.

The values for the net potential (φHW) are shown in
Table IV and are semi-quantitatively consistent with the esti-
mates from Ref. 25, where the same quantity was calculated
using a water slab. The estimates here are slightly lower by
about 0.1 V than those in Ref. 25. We can therefore con-
fidently state that the net potential of DFT water is small
(≈0 V–0.2 V). One drawback of the electrostatic potentials cal-
culated in Ref. 25 is that a hard sphere repulsion that acts only
on the oxygen atoms may be unphysical because a real solute
will repel the electron density and so the orientation of the
water molecules around the real solute could be different.75 We
have addressed this critique by examining the potential created
by water surrounding a helium atom. The resulting potential
is very similar, indicating that this detail does not significantly
alter the cavity electrostatics. An uncertainty of approximately
0.1 V for the values of the net potential can be estimated based
on the agreement of the different methods of calculating these
values.

We have calculated the solvation free energy of a 2 Å
cation and a 2.6 Å cation and anion. These were chosen as
they are close in size to the lithium, potassium, and fluo-
ride ions, respectively. The solvation free energies of neutral
pairs of these ions and the differences in solvation free ener-
gies of ions of the same charge are given in Table V. These
values are approximately independent of the choice of sol-
vation free energy type because the surface potential terms
cancel out. The reason for this is clear from Table II. These
values are also directly and unambiguously experimentally
accessible.

TABLE IV. Net potentials (φHW) calculated using the Hartree potential
corrected with the Bethe and dipolar surface potentials.

Functional Cavity size (Å) ΦHW(V )

revPBE-D3 2.0 0.19
revPBE-D3 2.85 (He)a 0.14
revPBE-D3 2.6 0.04
BLYP-D2 2.0 −0.03

aCalculated using a helium atom to create the cavity rather than using a hard sphere
repulsion.

http:www.cp2k.org
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
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TABLE V. Electrostatic solvation free energy differences and sums calcu-
lated with revPBE-D3. Values are given in kJ mol�1.

µ∗Real
PC µ∗Bulk

PC µ∗Int.
PC µ∗Ewald

PC

µ∗
2.0+ − µ

∗
2.6+ −156 ± 4 −171 ± 3 −156 ± 3 −154 ± 3

µ∗
2.0+ + µ∗

2.6−
−1105 ± 4 −1120 ± 4 −1105 ± 4 −1115 ± 4

µ∗
2.6+ + µ∗

2.6−
−949 ± 2 −949 ± 2 −949 ± 2 −962 ± 4

Figure 2 and Table VI give the single ion solvation free
energies of these ions. It is clear that the single ion solvation
free energies calculated with Ewald summation are unphys-
ical. They are much too large for the cations and much too
small for the anion. This is due to the very large Bethe poten-
tial of ab initio water, and it highlights that the single ion
Ewald solvation free energies do not correspond to an experi-
mentally measurable property. For classical water models, the
Bethe potential is substantially smaller and so these values
seem much more reasonable. Many researchers have reported
these values without making it clear that they do not corre-
spond to an experimentally measurable property.5,43,47–49 As
Hünenberger and Reif1 argue, this has lead to confusion in the
literature.1 The single ion Ewald solvation free energies are
not relevant to the experiment or even theoretical comparison
as they can only be compared in cases where the same method-
ology and water model have been used. It is better to report the
“real,” intrinsic, and bulk solvation free energies as provided
in Table VI.

Figure 3 shows that the effective potential appears to be
approximately linear for cations as a function of charge. This
is consistent with classical-MD.48 This linearity will likely
break down for multivalent ions due to dielectric saturation.
The inset of Fig. 3 shows that there does appear to be some
non-linearity in the low charge region for the 2.6 Å anion,
which is also consistent with some classical-MD studies.76

One remarkable result of this work is that DFT-MD cal-
culations exhibit a very large CHA. In other words, a negative
charged hard sphere with the size of fluoride has a “real” solva-
tion free energy that is more than 200 kJ mol�1 more negative
than a cation of the same size (similar to potassium). This dif-
ference is dramatically larger than the experimental estimate of
the CHA, where the fluoride anion has a solvation free energy
that is ≈50–100 kJ mol�1 more negative than potassium’s. It is
also much larger than the estimates of this quantity based on
classical-MD where it is ≈100 kJ mol�1 47,77 after correcting
for the surface potentials.

TABLE VI. Electrostatic solvation free energies calculated with revPBE-D3.
Values are given in kJ mol�1.

Charge Cavity size(Å) µ∗Real
PC µ∗Bulk

PC µ∗Int.
PC µ∗Ewald

PC

+ 2.0 −521 ± 3 −539 ± 3 −567 ± 3 −900 ± 3
+ 2.6 −365 ± 1 −369 ± 1 −411 ± 1 −746 ± 1
� 2.6 −584 ± 2 −580 ± 2 −538 ± 2 −215 ± 2

This large difference is not due to a deficiency in the
DFT-MD calculations. Rather, it serves as a harbinger that
real quantum mechanical ions are very different to the ideal-
ized charged hard spheres treated here. A reason that the CHA
is over-estimated is that charged hard spheres contain only
electrostatics and an infinite repulsion. Other forms of interac-
tions play an important role as well. For instance, the exchange
repulsion will significantly compensate for the electrostatic
CHA. Symmetry Adapted Perturbation Theory (SAPT) cal-
culations by Pollard and Beck3 make this clear, showing that
the exchange interaction energy with the surrounding water
molecules is approximately three times larger for fluoride than
it is for potassium. Other terms such as dispersion78 and induc-
tion also need to be included for an accurate accounting of this
effect.

This large CHA has significant implications for classical-
MD and continuum solvent models of ions in solution. Our
findings suggest that in order to correctly reproduce the con-
tributions to the solvation free energy, these models should
include a very large CHA in addition to a large compensating
charge dependent exchange energy. This picture is dramati-
cally different to current classical-MD results where almost
all of the CHA is contained in the electrostatic term, and the
exchange and dispersion energies are meant to be captured
with a Lennard-Jones interaction, which is relatively charge
symmetric for a given ion size. Clearly classical-MD is not
accurately reproducing the underlying physics. Having said
that, empirical models are phenomenological, i.e., they are
designed to capture the experimental results in a simple way,
rather than reproduce all the underlying physics.

A similar critique of the continuum solvent model of
Ref. 62 can be made where it was assumed that the electro-
static energy is charge symmetric and that all of the CHA
can be explained with the dispersion interaction. This is
clearly not the case as the simulations presented here show;
charged hard spheres do show a dramatic solvation asymmetry.
Interestingly though, the model seems to work fairly well for

FIG. 2. Solvation free energies as a
function of charge for a 2 Å cation and
a 2.6 Å cation and anion. (a) Ewald sol-
vation free energy and (b) real solvation
free energy.
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FIG. 3. Effective potential [Eq. (13)] for a 2 Å cation and a 2.6 Å cation and
anion as a function of charge. Inset shows the difference between the 2.6 Å
anion and the linear model highlighting the non-linearity at low charge.

cations. The charging process is linear, and this linearity allows
us to extract values for the Born radii from Eq. (17) as shown
in Table VII. If the definition for the Born radii used in Ref. 62
is used (RBorn = RS − 0.84 Å ), then an alternative derivation
of the Born radii is possible. Values of 1.28 Å and 1.88 Å
are predicted for the 2 Å and 2.6 Å ions, respectively. (The
peak in the ion-oxygen RDF is slightly larger than the hard
sphere repulsion size.) For the cations, these values compare
very well with the values given in Table VII. For the anion,
however, the cavity size differs dramatically from this simple
prediction. There are many alternative definitions for the Born
radius which have been proposed in the literature, many of
which give different definitions for cations and anions. How-
ever, to the best of our knowledge, none is consistent with the
very small Born radius for the fluoride sized anion determined
here, which, remarkably, is even smaller than the crystal size
of fluoride. This indicates that a Born model may be a rea-
sonable approximation for positive hard spheres but not for
negative ones. This is consistent with the non-linear behavior
of the anion at small charge states. The SAPT results pre-
sented by Pollard and Beck3 indicate that the asymmetry from
the exchange term approximately cancels the asymmetry from
the electrostatic and induction terms. This does provide some
justification for the continuum solvent model developed in
Ref. 62, where all of the asymmetry is assumed to arise from
the dispersion interaction.

It is important to note that the research presented in this
study only examines charged hard spheres, and so it is not
possible to directly determine the solvation free energies of
real ions. We have addressed this in Ref. 86. However, we
have determined values for the different definitions of the

TABLE VII. Linear models of the solvation free energy.

Charge Cavity size (Å) ziφeff (0) (V)a dφeff
dq ( V

e )b RBorn (Å)c

+ 2.0 0.19 �11.1 1.28
+ 2.6 0.04 �7.7 1.84
� 2.6 �0.04 �11.8 1.20

aFrom Table IV.
bFrom least squares fit to φeff .
cFrom Eq. (17).

surface potentials. It is these surface potentials that determine
the conversion between the different definitions of solvation
free energy. A central quantity for the conversion between dif-
ferent definitions of the solvation free energy is the dipolar
potential due to a distant air-water interface, φD. Hünenberger
and Reif1 argue that the dipolar surface potential of the air-
water interface (φD) is approximately +0.13 V. There is a very
large uncertainty in this estimate as it is determined primar-
ily from indirect experimental methods that do not necessarily
distinguish between the dipolar potential, the Bethe potential,
and the net potential. In addition, as discussed above, this quan-
tity depends on the choice of the origin of the water molecule
and so it is not at all clear what choice is implicit in the exper-
imental methods. The only way to determine φD directly is
with DFT-MD. Reference 25 estimates this quantity using the
oxygen atom as the center with BLYP-D2 and revPBE-D3.
Both functionals arrive at a value of +0.48 V for φD. Indepen-
dent researchers34 have also derived an almost identical value
(0.47 V) using a significantly smaller box (128 water molecules
versus 340) and different basis sets. This consistency suggests
that φD is being correctly estimated by DFT-MD simulations.
The generalized gradient approximation (GGA) functionals
used in the present study are approximate and so the values
need to be confirmed by comparison with experimental mea-
surements and higher level theoretical methods.79 The value
for the TIP4P-Ew and TIP4P water models is quite similar
(≈0.4 V–0.6 V),41,80 indicating that this result is consistent
with at least some classical-MD models. The MB-pol water
model81 gives a value of approximately 0.3 V for the dipolar
surface potential. This model reproduces the sum-frequency
generation (SFG) spectra of the air-water interface82 which is
sensitive to the water orientation and so this indicates that the
GGA functionals may be overestimating the dipolar surface
potential somewhat.

Last, we determine the conversion of our “real” single ion
free energies as obtained with Eq. (3) to the bulk solvation
free energies of Born theory. This conversion is given by the
net potential. It is important to note that the bulk values are
inherently ion size and repulsion type specific. Reference 25,
corroborated by the results outlined here, shows that the net
potential is not overly sensitive to the size or nature of the cav-
ity and that it tends to lie between 0 and 0.2 V. One possibility
is that the 0.13 V value given in Ref. 1 is actually the net poten-
tial not the dipolar potential. The net potential does not appear
to dramatically depend on the cavity size and so the concept of
a bulk solvation free energy still remains valid. Nevertheless,
there is no unambiguous way to define an exact value for this
type of solvation free energy for all ions. Because the Born free
energies are best compared with the bulk solvation free ener-
gies, this implies that a size and repulsion specific correction
is required to correct the Born model to allow for compari-
son with “real” solvation free energies. Shi and Beck73 argue
that a cavity size of 6.15 Å should be used to determine the
net potential. This is the size at which the cavity formation
and Born solvation free energies cancel for monovalent ions.
It should be noted that this is dramatically larger than any of
the alkali-halide ions.

Beck and co-workers also argue that a value of �0.4 V for
the net potential should be adopted.3,12,40,73,75 This is based on
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multiple indirect lines of evidence based on both theory and
experiment. First, Refs. 22, 83, and 84 are used to support a
value of �1065 kJ mol�1 for the bulk solvation free energies.
Second, Refs. 75 and 12 are used to justify real solvation free
energies of close to �1105 kJ mol�1, which is similar to the
CPA value. The difference between these values is used to infer
a net potential of ≈−0.4 V.

Our work here, along with Ref. 25, has provided esti-
mates of this net potential based on the framework of quantum
mechanical simulation, and these estimates do not support
a value of �0.4 V. Our research instead supports the notion
that the net potential should be considered to make only a
small contribution to the solvation free energies, somewhere
on the order of ≈0.1 V ≈ 10 kJ mol−1, namely, bulk solvation
free energies should be regarded as being close to the “real”
values. Although experimental evidence can in principle pro-
vide an indication of the surface potentials, interpretation of
experiment to infer these surface potentials is generally very
challenging and subjective.

The values for the single ion solvation free energies deter-
mined by Tissandier et al.8 on the basis of the CPA are consid-
ered by many to be the benchmark.85 This has recently been
disputed however.2,11,12

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have outlined the simulation protocol
necessary to compute the electrostatic solvation free energy
of charged hard spheres in water using DFT-MD. We have
defined four types of single ion solvation free energies com-
monly used in the literature and outlined a prescription to
convert between them, linking to other authors’ notations and
definitions where necessary. We have also provided best esti-
mates for the values necessary to make these conversions. In
particular, the net potential required to convert “real” to bulk
solvation free energies is shown to be small (≈0.1 V). The
dipolar surface potential necessary to convert “real” to intrin-
sic solvation free energies is shown to be 0.48 V. Moreover, we
can correct the solvation free energies calculated with standard
implementations of Ewald summation in order to account for
the unphysical electrostatic reference and arrive at physically
reasonable values for the single ion solvation free energy. The
path is now clear to calculate the solvation free energies of real
ions, which is presented in Ref. 86.

Our research also investigated the connection of Born
theory to DFT-MD and found that the charging free ener-
gies of monovalent cations are consistent with linear response.
In contrast, non-linear charging behavior appears to exist for
small anions at low charges. The Born model and classical-
MD do not properly reproduce the electrostatic solvation
free energy of charged hard spheres and so should be con-
sidered phenomenological approaches to ion hydration. A
highlight of our research suggests that with DFT-MD, the
CHA is significantly larger for charged hard spheres than both
the experimental estimates for real ions and for models of
ions that use classical empirical interaction potentials. This
result highlights the importance of local exchange and disper-
sion contributions to CHA that need to be incorporated into
reduced models in order to move beyond phenomenology and

capture the correct balance of the essential physics for ion
solvation.

SUPPLEMENTARY MATERIAL

See supplementary material for additional technical infor-
mation regarding the simulation protocol.
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Philippe Hüenberger, Richard Remsing, and John Weeks for
helpful discussions. Computing resources were generously
allocated by PNNL’s Institutional Computing program. This
research also used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.
T.T.D., G.K.S., and C.J.M. were supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences. M.D.B. was supported by MS3 (Materials Syn-
thesis and Simulation Across Scales) Initiative, a Labora-
tory Directed Research and Development Program at Pacific
Northwest National Laboratory (PNNL). PNNL is a multi-
program national laboratory operated by Battelle for the U.S.
Department of Energy.

1P. Hünenberger and M. Reif, Single-Ion Solvation: Experimental and
Theoretical Approaches to Elusive Thermodynamic Quantities (The Royal
Society of Chemistry, 2011).

2L. Vlcek and A. A. Chialvo, Fluid Phase Equilib. 407, 58 (2016).
3T. P. Pollard and T. L. Beck, Curr. Opin. Colloid Interface Sci. 23, 110
(2016).

4D. Horinek, S. I. Mamatkulov, and R. R. Netz, J. Chem. Phys. 130, 124507
(2009).

5A. Grossfield, P. Ren, and J. W. Ponder, J. Am. Chem. Soc. 125, 15671
(2003).

6K. Leung, S. B. Rempe, and O. A. von Lilienfeld, J. Chem. Phys. 130,
204507 (2009).

7A. Mukhopadhyay, A. T. Fenley, I. S. Tolokh, and A. V. Onufriev, J. Phys.
Chem. B 116, 9776 (2012).

8M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen,
A. D. Earhart, J. V. Coe, and T. R. Tuttle, J. Phys. Chem. A 102, 7787 (1998).

9C. P. Kelly, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 110, 16066
(2006).

10Y. Marcus, G. Hefter, and T. Chen, J. Chem. Thermodyn. 32, 639 (2000).
11L. Vlcek, A. A. Chialvo, and J. M. Simonson, J. Phys. Chem. A 117, 11328

(2013).
12T. P. Pollard and T. L. Beck, J. Chem. Phys. 140, 224507 (2014).
13R. Schurhammer and G. Wipff, J. Phys. Chem. A 104, 11159 (2000).
14R. Scheu, B. M. Rankin, Y. Chen, K. C. Jena, D. Ben-Amotz, and S. Roke,

Angew. Chem., Int. Ed. 53, 9560 (2014).
15C.-G. Zhan and D. A. Dixon, J. Phys. Chem. A 105, 11534 (2001).
16D. Asthagiri, L. R. Pratt, and J. D. Kress, Proc. Natl. Acad. Sci. U. S. A.

102, 6704 (2005).
17V. S. Bryantsev, M. S. Diallo, and W. A. Goddard, J. Phys. Chem. B 112,

9709 (2008).
18D. Sabo, D. Jiao, S. Varma, L. R. Pratt, and S. B. Rempe, Annu. Rep., Sect.

C: Phys. Chem. 109, 266 (2013).
19S. Merchant, P. D. Dixit, K. R. Dean, and D. Asthagiri, J. Chem. Phys. 135,

054505 (2011).
20D. M. Rogers and S. B. Rempe, J. Phys. Chem. B 115, 9116 (2011).
21C.-G. Zhan and D. A. Dixon, J. Phys. Chem. A 108, 2020 (2004).
22D. Asthagiri, L. R. Pratt, and H. S. Ashbaugh, J. Chem. Phys. 119, 2702

(2003).
23D. Asthagiri, L. R. Pratt, M. E. Paulaitis, and S. B. Rempe, J. Am. Chem.

Soc. 126, 1285 (2004).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-015791
http://dx.doi.org/10.1016/j.fluid.2015.05.048
http://dx.doi.org/10.1016/j.cocis.2016.06.015
http://dx.doi.org/10.1063/1.3081142
http://dx.doi.org/10.1021/ja037005r
http://dx.doi.org/10.1063/1.3137054
http://dx.doi.org/10.1021/jp305226j
http://dx.doi.org/10.1021/jp305226j
http://dx.doi.org/10.1021/jp982638r
http://dx.doi.org/10.1021/jp063552y
http://dx.doi.org/10.1006/jcht.1999.0629
http://dx.doi.org/10.1021/jp408632e
http://dx.doi.org/10.1063/1.4881602
http://dx.doi.org/10.1021/jp0015731
http://dx.doi.org/10.1002/anie.201310266
http://dx.doi.org/10.1021/jp012536s
http://dx.doi.org/10.1073/pnas.0408071102
http://dx.doi.org/10.1021/jp802665d
http://dx.doi.org/10.1039/c3pc90009f
http://dx.doi.org/10.1039/c3pc90009f
http://dx.doi.org/10.1063/1.3620077
http://dx.doi.org/10.1021/jp2012864
http://dx.doi.org/10.1021/jp0311512
http://dx.doi.org/10.1063/1.1587122
http://dx.doi.org/10.1021/ja0382967
http://dx.doi.org/10.1021/ja0382967


161716-11 Duignan et al. J. Chem. Phys. 147, 161716 (2017)

24M. I. Chaudhari, M. Soniat, and S. B. Rempe, J. Phys. Chem. B 119, 8746
(2015).

25R. C. Remsing, M. D. Baer, G. K. Schenter, C. J. Mundy, and J. D. Weeks,
J. Phys. Chem. Lett. 5, 2767 (2014).

26A. Ben-Naim, J. Phys. Chem. 82, 792 (1978).
27D. Ben-Amotz, F. O. Raineri, and G. Stell, J. Phys. Chem. B 109, 6866

(2005).
28T. L. Beck, M. E. Paulaitis, and L. R. Pratt, The Potential Distribution

Theorem and Models of Molecular Solutions (Cambridge University Press,
2006).

29D. M. Rogers and T. L. Beck, J. Chem. Phys. 129, 134505 (2008).
30D. Asthagiri, L. R. Pratt, and J. D. Kress, Phys. Rev. E 68, 041505

(2003).
31D. Sabo, S. Varma, M. G. Martin, and S. B. Rempe, J. Phys. Chem. B 112,

867 (2008).
32K. Leung, J. Phys. Chem. Lett. 1, 496 (2010).
33S. M. Kathmann, I.-F. W. Kuo, C. J. Mundy, and G. K. Schenter, J. Phys.

Chem. B 115, 4369 (2011).
34M. Sulpizi, M. Salanne, M. Sprik, and M.-P. Gaigeot, J. Phys. Chem. Lett.

4, 83 (2013).
35M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501

(2006).
36M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2011).
37T. Simonson and B. Roux, Mol. Simul. 42, 1090 (2016).
38M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Chem. Phys. 90, 5211

(1989).
39L. R. Pratt, J. Phys. Chem. 96, 25 (1992).
40T. L. Beck, Chem. Phys. Lett. 561-562, 1 (2013).
41J. R. Cendagorta and T. Ichiye, J. Phys. Chem. B 119, 9114 (2015).
42T. Simonson, G. Hummer, and B. Roux, J. Phys. Chem. A 121, 1525

(2017).
43G. Lamoureux and B. Roux, J. Phys. Chem. B 110, 3308 (2006).
44S. W. Rick, J. Comput. Chem. 37, 2060 (2016).
45G. Hummer, L. R. Pratt, A. E. Garcı́a, S. Garde, B. J. Berne, and S. W. Rick,

J. Phys. Chem. B 102, 3841 (1998).
46J. Åqvist and T. Hansson, J. Phys. Chem. B 102, 3837 (1998).
47S. Rajamani, T. Ghosh, and S. Garde, J. Chem. Phys. 120, 4457 (2004).
48J. P. Bardhan, P. Jungwirth, and L. Makowski, J. Chem. Phys. 137, 124101

(2012).
49F. Sedlmeier and R. R. Netz, J. Chem. Phys. 138, 115101 (2013).
50M. M. Reif and P. H. Hünenberger, J. Phys. Chem. B 120, 8485 (2016).
51H. S. Ashbaugh, J. Phys. Chem. B 104, 7235 (2000).
52R. C. Remsing, J. M. Rodgers, and J. D. Weeks, J. Stat. Phys. 145, 313

(2011).
53T. L. Beck, J. Phys. Chem. B 115, 9776 (2011).
54T. L. Beck, J. Stat. Phys. 145, 335 (2011).
55R. C. Remsing and J. D. Weeks, J. Phys. Chem. B 120, 6238 (2016).

56X. You, M. I. Chaudhari, and L. R. Pratt, in Aqua Incognita: Why Ice
Floats on Water and Galileo 400 Years on (Connor Court Publishing, 2014),
pp. 434–442.

57Y. Levin, J. Chem. Phys. 129, 124712 (2008).
58V. B. Bobrov, I. M. Sokolov, and S. A. Trigger, Phys. Plasmas 19, 062101

(2012).
59B. A. Pethica, Phys. Chem. Chem. Phys. 9, 6253 (2007).
60G. Berghold, C. J. Mundy, A. H. Romero, J. Hutter, and M. Parrinello, Phys.

Rev. B 61, 10040 (2000).
61M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011).
62T. T. Duignan, D. F. Parsons, and B. W. Ninham, J. Phys. Chem. B 117,

9421 (2013).
63J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and

J. Hutter, Comput. Phys. Commun. 167, 103 (2005).
64J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).
65S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
66G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635

(1992).
67A. D. Becke, Phys. Rev. A 38, 3098 (1988).
68C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
69J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
70Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
71S. Grimme, J. Comput. Chem. 25, 1463 (2004).
72S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104

(2010).
73Y. Shi and T. L. Beck, J. Chem. Phys. 139, 044504 (2013).
74D. M. Wilkins, D. E. Manolopoulos, and L. X. Dang, J. Chem. Phys. 142,

064509 (2015).
75T. P. Pollard and T. L. Beck, J. Chem. Phys. 141, 18C512 (2014).
76G. Hummer, L. R. Pratt, and A. E. Garcı́a, J. Phys. Chem. A 102, 7885

(1998).
77G. Hummer, L. R. Pratt, and A. E. Garcı́a, J. Phys. Chem. 100, 1206 (1996).
78T. T. Duignan, D. F. Parsons, and B. W. Ninham, Chem. Phys. Lett. 608, 55

(2014).
79M. Del Ben, J. Hutter, and J. VandeVondele, J. Chem. Phys. 143, 054506

(2015).
80G. L. Warren and S. Patel, J. Chem. Phys. 127, 064509 (2007).
81G. R. Medders, V. Babin, and F. Paesani, J. Chem. Theory Comput. 10, 2906

(2014).
82G. R. Medders and F. Paesani, J. Am. Chem. Soc. 138, 3912 (2016).
83Y. Marcus, J. Chem. Soc., Faraday Trans. 1 83, 2985 (1987).
84H. S. Ashbaugh and D. Asthagiri, J. Chem. Phys. 129, 204501 (2008).
85D. M. Camaioni and C. A. Schwerdtfeger, J. Phys. Chem. A 109, 10795

(2005).
86T. T. Duignan, M. D. Baer, G. K. Schenter, and C. J. Mundy, “Real single

ion solvation free energies with quantum mechanical simulation,” Chem.
Sci. (published online).

http://dx.doi.org/10.1021/acs.jpcb.5b03050
http://dx.doi.org/10.1021/jz501067w
http://dx.doi.org/10.1021/j100496a008
http://dx.doi.org/10.1021/jp045090z
http://dx.doi.org/10.1063/1.2985613
http://dx.doi.org/10.1103/physreve.68.041505
http://dx.doi.org/10.1021/jp075459v
http://dx.doi.org/10.1021/jz900268s
http://dx.doi.org/10.1021/jp1116036
http://dx.doi.org/10.1021/jp1116036
http://dx.doi.org/10.1021/jz301858g
http://dx.doi.org/10.1063/1.2201698
http://dx.doi.org/10.1063/1.3567020
http://dx.doi.org/10.1080/08927022.2015.1121544
http://dx.doi.org/10.1063/1.456536
http://dx.doi.org/10.1021/j100180a010
http://dx.doi.org/10.1016/j.cplett.2013.01.008
http://dx.doi.org/10.1021/jp508878v
http://dx.doi.org/10.1021/acs.jpca.6b12691
http://dx.doi.org/10.1021/jp056043p
http://dx.doi.org/10.1002/jcc.24426
http://dx.doi.org/10.1021/jp980145g
http://dx.doi.org/10.1021/jp973207w
http://dx.doi.org/10.1063/1.1644536
http://dx.doi.org/10.1063/1.4752735
http://dx.doi.org/10.1063/1.4794153
http://dx.doi.org/10.1021/acs.jpcb.6b02156
http://dx.doi.org/10.1021/jp0015067
http://dx.doi.org/10.1007/s10955-011-0299-3
http://dx.doi.org/10.1021/jp204883h
http://dx.doi.org/10.1007/s10955-011-0298-4
http://dx.doi.org/10.1021/acs.jpcb.6b02238
http://dx.doi.org/10.1063/1.2982244
http://dx.doi.org/10.1063/1.4728075
http://dx.doi.org/10.1039/b706153f
http://dx.doi.org/10.1103/physrevb.61.10040
http://dx.doi.org/10.1103/physrevb.61.10040
http://dx.doi.org/10.1063/1.3567022
http://dx.doi.org/10.1021/jp403596c
http://dx.doi.org/10.1016/j.cpc.2004.12.014
http://dx.doi.org/10.1063/1.2770708
http://dx.doi.org/10.1103/physrevb.54.1703
http://dx.doi.org/10.1063/1.463940
http://dx.doi.org/10.1103/physreva.38.3098
http://dx.doi.org/10.1103/physrevb.37.785
http://dx.doi.org/10.1103/physrevlett.77.3865
http://dx.doi.org/10.1103/physrevlett.80.890
http://dx.doi.org/10.1002/jcc.20078
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1063/1.4814070
http://dx.doi.org/10.1063/1.4907554
http://dx.doi.org/10.1063/1.4896217
http://dx.doi.org/10.1021/jp982195r
http://dx.doi.org/10.1021/jp951011v
http://dx.doi.org/10.1016/j.cplett.2014.05.056
http://dx.doi.org/10.1063/1.4927325
http://dx.doi.org/10.1063/1.2771550
http://dx.doi.org/10.1021/ct5004115
http://dx.doi.org/10.1021/jacs.6b00893
http://dx.doi.org/10.1039/f19878302985
http://dx.doi.org/10.1063/1.3013865
http://dx.doi.org/10.1021/jp054088k
http://dx.doi.org/10.1039/C7SC02138K
http://dx.doi.org/10.1039/C7SC02138K

