14 research outputs found

    Development and thermal characterization of cellulose/clay nanocomposites

    Get PDF
    Cotton is the most important textile fiber for apparel use and is preferred to synthetic fibers for reasons such as comfort and feel. Cotton may also be used to produce the regenerated cellulose fibers, such as lyocell and viscose, which have numerous textile applications. A major drawback of cotton, and other cellulosic fibers, is its inherent ability to burn. Many finishes have been developed to impart flame resistance to cotton. These finishes have limited use in textiles for apparel due to problems with the finish not being durable during laundering and increasing the susceptibility of the fabric to wear. Most of these finishes have been developed for products that are not laundered, such as drapery and furnishing fabrics. The development of cellulose/clay nanocomposites for use as flame retardant materials based on cotton is reported in this paper. These materials are designed to take advantage of the thermal stability and flame resistance imparted by silicate filler materials and should require no fire retardant finish. The use of cellulose/clay nanocomposites can allow for the use of natural fibers in applications which are currently limited to synthetic fibers. The use of cellulosic fibers as a feedstock for the composite materials makes use of renewable resources and reduces the use of harsh chemicals normally found in flame retardant materials and finishes. Novel nanocomposite materials have been produced from cellulose with layered silicate clays used as the nanofiller material. Three exfoliation and intercalation methods using different solvents and clay pretreatment techniques were attempted in production of these organic-inorganic hybrids. The method that resulted in superior cellulose/clay nanocomposites utilized a pretreatment of the clay and 4-methylmorpholine-N-oxide as the cellulose solvent. The nanocomposites show significant improvements in thermal properties when compared with cellulose control sources and cellulose processed under the conditions for nanocomposite preparation. The degradation temperature of the nanocomposites increased by 45 °C and the char yields for some compositions doubled those of the controls. The crystalline melt of the materials decreased by 15 °C

    A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton

    Get PDF
    Title: Quantile-quantile (Q-Q) Plot of six fiber traits generated from GWAS analysis following mixed linear model (MLM) using GAPIT software. A) Fiber elongation (ELO), B) Micronaire (MIC), C) Short fiber content (SFC), D) Fiber strength (STR), E) Upper half mean fiber length (UHM), and F) Uniformity index (UI). Description of data: Q-Q plots of six fiber traits generated from GWAS analysis following MLM are included in this figure. The X and Y axis have the expected and observed negative logarithm 10 of p value, respectively generated during GWAS analysis. (DOCX 207 kb

    Leveraging Big Data to Preserve the Mississippi River Valley Alluvial Aquifer: A Blueprint for the National Center for Alluvial Aquifer Research

    No full text
    The challenge of a depleting Mississippi River Valley Alluvial Aquifer (MRVAA) requires reducing groundwater withdrawal for irrigation, increasing aquifer recharge, and protecting water quality for sustainable water use. To meet the challenge, the National Center for Alluvial Aquifer Research (NCAAR) is oriented towards producing scientific work aimed at improving irrigation methods and scheduling, employing alternative water sources, and improving crop management and field practices to increase water use efficiency across the region. Big data is key for NCAAR success. Its scientists use big data for research in the form of various soil, weather, geospatial, and water monitoring and management devices to collect agronomic or hydrogeologic data. They also produce, process, and analyze big data which are converted to scientific publications and farm management recommendations via technology transfer. Similarly, decision tools that would help producers leverage the wealth of data they generate from their operations will also be developed and made available to them. This article outlines some of the many ways big data is intertwined with NCAAR’s mission

    The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    No full text
    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes

    Effects of ball milling on the structure of cotton cellulose

    No full text
    © 2019, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. Cellulose is often described as a mixture of crystalline and amorphous material. A large part of the general understanding of the chemical, biochemical and physical properties of cellulosic materials is thought to depend on the consequences of the ratio of these components. For example, amorphous materials are said to be more reactive and have less tensile strength but comprehensive understanding and definitive analysis remain elusive. Ball milling has been used for decades to increase the ratio of amorphous material. The present work used 13 techniques to follow the changes in cotton fibers (nearly pure cellulose) after ball milling for 15, 45 and 120 min. X-ray diffraction results were analyzed with the Rietveld method; DNP (dynamic nuclear polarization) natural abundance 2D NMR studies in the next paper in this issue assisted with the interpretation of the 1D analyses in the present work. A conventional NMR model’s paracrystalline and inaccessible crystallite surfaces were not needed in the model used for the DNP studies. Sum frequency generation (SFG) spectroscopy also showed profound changes as the cellulose was decrystallized. Optical microscopy and field emission-scanning electron microscopy results showed the changes in particle size; molecular weight and carbonyl group analyses by gel permeation chromatography confirmed chemical changes. Specific surface areas and pore sizes increased. Fourier transform infrared (FTIR) and Raman spectroscopy also indicated progressive changes; some proposed indicators of crystallinity for FTIR were not in good agreement with our results. Thermogravimetric analysis results indicated progressive increase in initial moisture content and some loss in stability. Although understanding of structural changes as cellulose is amorphized by ball milling is increased by this work, continued effort is needed to improve agreement between the synchrotron and laboratory X-ray methods used herein and to provide physical interpretation of the SFG results
    corecore