1,412 research outputs found

    Single charge and exciton dynamics probed by molecular-scale-induced electroluminescence

    Full text link
    Excitons and their constituent charge carriers play the central role in electroluminescence mechanisms determining the ultimate performance of organic optoelectronic devices. The involved processes and their dynamics are often studied with time-resolved techniques limited by spatial averaging that obscures the properties of individual electron-hole pairs. Here we overcome this limit and characterize single charge and exciton dynamics at the nanoscale by using time-resolved scanning tunnelling microscopy-induced luminescence (TR-STML) stimulated with nanosecond voltage pulses. We use isolated defects in C60_{60} thin films as a model system into which we inject single charges and investigate the formation dynamics of a single exciton. Tuneable hole and electron injection rates are obtained from a kinetic model that reproduces the measured electroluminescent transients. These findings demonstrate that TR-STML can track dynamics at the quantum limit of single charge injection and can be extended to other systems and materials important for nanophotonic devices

    Character of electronic states in the transport gap of molecules on surfaces

    Full text link
    We report on scanning tunneling microscopy (STM) topographs of individual metal phthalocyanines (MPc) on a thin salt (NaCl) film on a gold substrate, at tunneling energies within the molecule's electronic transport gap. Theoretical models of increasing complexity are discussed. The calculations for MPcs adsorbed on a thin NaCl layer on Au(111) demonstrate that the STM pattern rotates with the molecule's orientations - in excellent agreement with the experimental data. Thus, even the STM topography obtained for energies in the transport gap represent the structure of a one atom thick molecule. It is shown that the electronic states inside the transport gap can be rather accurately approximated by linear combinations of bound molecular orbitals (MOs). The gap states include not only the frontier orbitals but also surprisingly large contributions from energetically much lower MOs. These results will be essential for understanding processes, such as exciton creation, which can be induced by electrons tunneling through the transport gap of a molecule

    Anionic Character of the Conduction Band of Sodium Chloride

    Full text link
    The alkali halides are ionic compounds. Each alkali atom donates an electron to a halogen atom, leading to ions with full shells. The valence band is mainly located on halogen atoms, while, in a traditional picture, the conduction band is mainly located on alkali atoms. Scanning tunnelling microscopy of NaCl at 4 K actually shows that the conduction band is located on Cl−^- because the strong Madelung potential reverses the order of the Na+^+ 3s and Cl−^- 4s levels. We verify this reversal is true for both atomically thin and bulk NaCl, and discuss implications for II-VI and I-VII compounds

    H0LiCOW III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts

    Get PDF
    Based on spectroscopy and multiband wide-field observations of the gravitationally lensed quasar HE 0435-1223, we determine the probability distribution function of the external convergence κext\kappa_\mathrm{ext} for this system. We measure the under/overdensity of the line of sight towards the lens system and compare it to the average line of sight throughout the universe, determined by using the CFHTLenS as a control field. Aiming to constrain κext\kappa_\mathrm{ext} as tightly as possible, we determine under/overdensities using various combinations of relevant informative weighing schemes for the galaxy counts, such as projected distance to the lens, redshift, and stellar mass. We then convert the measured under/overdensities into a κext\kappa_\mathrm{ext} distribution, using ray-tracing through the Millennium Simulation. We explore several limiting magnitudes and apertures, and account for systematic and statistical uncertainties relevant to the quality of the observational data, which we further test through simulations. Our most robust estimate of κext\kappa_\mathrm{ext} has a median value κextmed=0.004\kappa^\mathrm{med}_\mathrm{ext} = 0.004 and a standard deviation of σκ=0.025\sigma_\kappa = 0.025. The measured σκ\sigma_\kappa corresponds to 2.5%2.5\% uncertainty on the time delay distance, and hence the Hubble constant H0H_0 inference from this system. The median κextmed\kappa^\mathrm{med}_\mathrm{ext} value is robust to ∼0.005\sim0.005 (i.e. ∼0.5%\sim0.5\% on H0H_0) regardless of the adopted aperture radius, limiting magnitude and weighting scheme, as long as the latter incorporates galaxy number counts, the projected distance to the main lens, and a prior on the external shear obtained from mass modeling. The availability of a well-constrained κext\kappa_\mathrm{ext} makes \hequad\ a valuable system for measuring cosmological parameters using strong gravitational lens time delays.Comment: 24 pages, 17 figures, 6 tables. Submitted to MNRA

    H0LiCOW XII. Lens mass model of WFI2033-4723 and blind measurement of its time-delay distance and H0H_0

    Get PDF
    We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033-4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope\textit{Hubble Space Telescope} imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be 4784−248+399 Mpc4784_{-248}^{+399}~\mathrm{Mpc}, an average precision of 6.6%6.6\%. This translates to a Hubble constant H0=71.6−4.9+3.8 km s−1 Mpc−1H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}, assuming a flat Λ\LambdaCDM cosmology with a uniform prior on Ωm\Omega_\mathrm{m} in the range [0.05, 0.5]. This work is part of the H0H_0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII).Comment: Version accepted by MNRAS. 29 pages including appendix, 17 figures, 6 tables. arXiv admin note: text overlap with arXiv:1607.0140

    GNOSIS: the first instrument to use fibre Bragg gratings for OH suppression

    Full text link
    GNOSIS is a prototype astrophotonic instrument that utilizes OH suppression fibres consisting of fibre Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47-1.7 microns. GNOSIS was commissioned at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibres, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput and excellent suppression of the skylines by the OH suppression fibres, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS and IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise-dominated. OH suppression fibres could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibres paired with a fibre-fed spectrograph will at least provide a real benefits at low resolving powers.Comment: 15 pages, 13 figures, accepted to A
    • …
    corecore