1,553 research outputs found
Why holding a presidential nominating convention in a swing state matters
This week the media’s narrative shifts from Cleveland Ohio, the site of the 2016 Republican National Convention, to Philadelphia, Pennsylvania, where the Democrats are holding their convention. That nominating conventions provide a ‘bump’ in the polls for a party’s candidate is relatively well known – but is there an effect on the states and cities which are holding them? Research from Christopher B. Mann and Joseph E. Uscinski shows that party conventions can swing voters in nearby counties, which can in turn shift the statewide outcome in a close contest. Both parties, they write, get an electoral boost from nearby counties that heavily lean towards them, but can experience a polling backlash in counties which support the other side
M–M Bond-Stretching Energy Landscapes for M_2(dimen)_(4)^(2+) (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane) Complexes
Isomers of Ir_2(dimen)_(4)^(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir–Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir–Ir distance is favored at room temperature [K = ~8; ΔH° = −0.8 kcal/mol; ΔS° = 1.44 cal mol^(–1) K^(–1)]. We report calculations that shed light on M_2(dimen)_(4)^(2+) (M = Rh, Ir) structural differences: (1) metal–metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A_(2u)) distortion promotes twisting of the ligand backbone at short metal–metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir_2(dimen)_(4)^(2+) (4.1 Å Ir–Ir with 0° twist angle and ~3.6 Å Ir–Ir with ±12° twist angle) but not for the rhodium analogue (4.5 Å Rh–Rh with no twisting). Because both the ligand strain and A_(2u) distortional energy are virtually identical for the two complexes, the strength of the metal–metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir–Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 2.87 Å; F_(Ir–Ir) = 0.99 mdyn Å^(–1)); (2) a single-minimum, anharmonic surface for the ground state of Rh_2(dimen)_(4)^(2+) (R_(e,Rh–Rh) = 3.23 Å; F_(Rh–Rh) = 0.09 mdyn Å^(–1)); (3) a double-minimum (along the Ir–Ir coordinate) surface for the ground state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 3.23 Å; F_(Ir–Ir) = 0.16 mdyn Å^(–1))
Exact formula for bond percolation on cliques
The authors would like to thank the School of Computer Science, the School of Chemistry, and the School of Biology of the University of St Andrews for funding this work.We present exact solutions for the size of the giant connected component of complex networks composed of cliques following bond percolation. We use our theoretical result to find the location of the percolation threshold of the model, providing analytical solutions where possible. We expect the results derived here to be useful to a wide variety of applications including graph theory, epidemiology, percolation, and lattice gas models, as well as fragmentation theory. We also examine the Erdős-Gallai theorem as a necessary condition on the graphicality of configuration model networks comprising clique subgraphs.Publisher PDFPeer reviewe
Chiral Multiplets of Heavy-Light Mesons
The recent discovery of a narrow resonance in D_s+pi^0 by the BABAR
collaboration is consistent with the interpretation of a heavy J^P(0+,1+) spin
multiplet. This system is the parity partner of the groundstate (0-,1-)
multiplet, which we argue is required in the implementation of SU(3)_L x
SU(3)_R chiral symmetry in heavy-light meson systems. The (0+,1+)->(0-,1-)+pi
transition couplings satisfy a Goldberger-Treiman relation, g_pi =
Delta(M)/f_pi, where Delta(M) is the mass gap. The BABAR resonance fits the 0+
state, with a kinematically blocked principal decay mode to D+K. The allowed
D_s+pi, D_s+2pi and electromagnetic transitions are computed from the full
chiral theory and found to be suppressed, consistent with the narrowness of the
state. This state establishes the chiral mass difference for all such
heavy-quark chiral multiplets, and precise predictions exist for the analogous
B_s and strange doubly-heavy baryon states.Comment: 10 pages; minor editorial revisions; recomputed M1 transitio
Recommended from our members
Near-Earth initiation of a terrestrial substorm
Despite the characterization of the auroral substorm more than 40 years ago, controversy still surrounds the processes triggering substorm onset initiation. That stretching of the Earth's magnetotail following the addition of new nightside magnetic flux from dayside reconnection powers the substorm is well understood; the trigger for explosive energy release at substorm expansion phase onset is not. Using ground-based data sets with unprecedented combined spatial and temporal coverage, we report the discovery of new localized and contemporaneous magnetic wave and small azimuthal scale auroral signature of substorm onset. These local auroral arc undulations and magnetic field signatures rapidly evolve on second time scales for several minutes in advance of the release of the auroral surge. We also present evidence from a conjugate geosynchronous satellite of the concurrent magnetic onset in space as the onset of magnetic pulsations in the ionosphere, to within technique error. Throughout this time period, the more poleward arcs that correspond to the auroral oval which maps to the central plasma sheet remain undisturbed. There is good evidence that flows from the midtail crossing the plasma sheet can generate north-south auroral structures, yet no such auroral forms are seen in this event. Our observations present a severe challenge to the standard hypothesis that magnetic reconnection in stretched magnetotail fields triggers onset, indicating substorm expansion phase initiation occurs on field lines that are close to the Earth, as bounded by observations at geosynchronous orbit and in the conjugate ionosphere
Information Tradeoff Relations for Finite-Strength Quantum Measurements
In this paper we give a new way to quantify the folklore notion that quantum
measurements bring a disturbance to the system being measured. We consider two
observers who initially assign identical mixed-state density operators to a
two-state quantum system. The question we address is to what extent one
observer can, by measurement, increase the purity of his density operator
without affecting the purity of the other observer's. If there were no
restrictions on the first observer's measurements, then he could carry this out
trivially by measuring the initial density operator's eigenbasis. If, however,
the allowed measurements are those of finite strength---i.e., those
measurements strictly within the interior of the convex set of all
measurements---then the issue becomes significantly more complex. We find that
for a large class of such measurements the first observer's purity increases
the most precisely when there is some loss of purity for the second observer.
More generally the tradeoff between the two purities, when it exists, forms a
monotonic relation. This tradeoff has potential application to quantum state
control and feedback.Comment: 15 pages, revtex3, 3 eps figure
- …