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Exact formula for bond percolation on cliques
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We present exact solutions for the size of the giant connected component of complex networks composed of
cliques following bond percolation. We use our theoretical result to find the location of the percolation threshold
of the model, providing analytical solutions where possible. We expect the results derived here to be useful to a
wide variety of applications including graph theory, epidemiology, percolation, and lattice gas models, as well
as fragmentation theory. We also examine the Erdős-Gallai theorem as a necessary condition on the graphicality
of configuration model networks comprising clique subgraphs.
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I. INTRODUCTION

Bond percolation on graphs [1] is a process in which edges
are randomly removed or unoccupied with some probability,
T − 1, or occupied with probability T . As T is reduced to
some critical value, T ∗, the graph exhibits a second-order
phase transition and fails to be globally connected. The size
of the giant connected component (GCC), as well as the
location of the critical point, are important quantities within
the percolation process. Percolation has not only inherent the-
oretical interest but is also important for various applications
across many disciplines [2–10]. Perhaps the most prominent
utilization is the study of diseases spreading through struc-
tured populations with transmission probability T . When the
infection period of a vertex is a single-valued distribution, the
size of the GCC is isomorphic to the outbreak size of the dis-
ease; similarly, the critical bond occupation probability is the
epidemic threshold. It is well understood how to extract the
properties of graphs using the generating function formulation
[2,3,11–13]. In its original form, it is assumed that there are
no closed loops or cycles among the edges of the graph; it
is locally treelike everywhere. When this condition is true,
or approximately true, the generating function formulation
yields excellent results compared to simulation. However, if
the network fails to be locally treelike, then the formulation
must be modified to describe correctly the emergent properties
of percolation. There has been early work dedicated to finding
the correct way to model percolation on graphs comprised
of subgraph motifs [14]; however, these works are based on
recursive formulas. Newman [15] provided analytical break-
through in the study of configuration model networks with
closed loops using the generating function formulation. The
next theoretical milestone is by Miller and Newman in 2009
who independently studied three cliques along with treelike
edges [16,17]. Shortly thereafter Karrer and Newman [18]
developed a general framework that addressed the study of
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larger subgraphs; however, it was determined that a crucial
quantity, which we denote by gτ , could only be determined by
an exponentially slow exhaustive enumeration of states. This
quantity is the probability that a vertex remains unattached to
the GCC despite its involvement in a subgraph of topology τ .
Allard et al. [19,20] developed a comprehensive and versatile
technique based on recursive formulas to determine the perco-
lation properties numerically through iteration. There has also
been other recursive methods derived for the same purpose
[21]. Within the spirit of these developments, Mann et al.
developed an analytical approach that approximates the gτ

expression to high accuracy [22,23], affording an equation-
based treatment of percolation on arbitrary subgraphs. It
remains that the percolation properties can be found exactly,
but slowly through Karrer and Newman’s method, exactly but
recursively though Allard et al.’s method, or approximately
but analytically though Mann et al.’s method.

In this paper, we develop exact, closed-form analytical
expressions for the probability that a clique does not lead to
the GCC when edges are removed with probability 1 − T .
Cliques are cycles whose vertices are all degree equivalent
to one another and connect to all other vertices in the motif.
Application of our counting method to inhomogeneous cy-
cles (cycles that contain vertices with different degrees) can
readily be performed; however, the final expression depends
on the details of the subgraph. We examine other types of
homogeneous subgraphs in Appendix B. The method devel-
oped herein is most similar to [15–18,24] and the polynomials
that our expression yields (shown in Appendix C, Table I)
are equivalent to those found by [15] via recursion, when our
parameter u in Eq. (27) is set to unity, thus confirming their
exactness.

II. BACKGROUND

It is necessary to review both the generating function for-
mulation and the configuration model in order to progress with
contents of this paper [2,3].
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TABLE I. gN expressions for cliques of six vertices or fewer obtained from Eq. (27).

N clique gN equation

3 (1 − T )2 + 2uT (1 − T )2 + 3(uT )2(1 − T ) + u2T 3

4
(1 − T )3 + 3uT (1 − T )4 + 3u2[T 3(1 − T )3 + 3T 2(1 − T )4]
+u3[T 6 + 6T 5(1 − T ) + 15T 4(1 − T )2 + 16T 3(1 − T )3]

5
(1 − T )4 + 4uT (1 − T )6 + 6u2[T 3(1 − T )6 + 3T 2(1 − T )7] + 4u3[T 6(1 − T )4 + 6T 5(1 − T )5

+15T 4(1 − T )6 + 16T 3(1 − T )7] + u4[T 10 + 10T 9(1 − T ) + 45T 8(1 − T )2 + 120T 7(1 − T )3

+205T 6(1 − T )4 + 222T 5(1 − T )5 + 125T 4(1 − T )6]

6

(1 − T )5 + 5uT (1 − T )8 + 10u2[T 3(1 − T )9 + 3T 2(1 − T )10] + 10u3[T 6(1 − T )8 + 6T 5(1 − T )9

+15T 4(1 − T )10 + 16T 3(1 − T )11] + 5u4[T 10(1 − T )5 + 10T 9(1 − T )6 + 45T 8(1 − T )7

+120T 7(1 − T )8 + 205T 6(1 − T )9 + 222T 5(1 − T )10 + 125T 4(1 − T )11] + u5[T 15 + 15T 14(1 − T )
+105T 13(1 − T )2 + 455T 12(1 − T )3 + 1365T 11(1 − T )4 + 2997T 10(1 − T )5 + 4945T 9(1 − T )6

+6165T 8(1 − T )7 + 5700T 7(1 − T )8 + 3660T 6(1 − T )9 + 1296T 5(1 − T )10]

A. Generating functions for treelike networks

The generating function framework is based on the de-
gree distribution, p(k), which is the probability of choosing
a vertex of degree k from the graph. Two generating functions
are introduced whose coefficients are (i) the probability of
choosing a degree k vertex at random from the network

G0(z) =
∞∑

k=0

p(k)zk (1)

and (ii) the probability of following a randomly chosen edge
to a vertex with excess degree k

G1(z) = G′
0(z)

G′
0(1)

, (2)

where 〈k〉 = G′
0(1) is the average degree of a vertex in the

graph.
Defining u as the probability that a neighbor is unattached

to the GCC, the probability that a vertex fails to become at-
tached through a single edge is g2 = 1 − T + uT , which is the
sum of the probability that the edge was not occupied, 1 − T ,
and the probability that it was occupied, but the neighbor was
unattached to the GCC, uT . The quantity u can be found as
the solution to a self-consistent expression [12]

u = G1(g2). (3)

The expected size of the GCC, S , is then given by S =
1 − G0(g2). The critical point can then be found by perturbing
around u = 1, which corresponds to S = 0 since G0(1) = 1.
From the linear stability analysis, expanding Eq. (3) with a
Taylor series we have u = 1 + uT G′

1(1) + O(u2), from which
we find T ∗ = 1/G′

1(1) [2,12,13] at the fixed point u = 1.

B. Configuration model for treelike networks

The configuration model is a method that can be used to
create a particular random graph from an ensemble of degree
equivalent, uncorrelated random graphs. In the model, the
vertices of the graph are assigned an integer, drawn at random
from the degree distribution, which indicate its degree. The
degree sequence {k} = k1, k2, . . . , kN , where

∑
i ki = 2E for

a network of N ∈ N vertices and E ∈ N edges, is a sequence
of the degrees of the vertices and is typically displayed in
descending order such that k1 � k2 � · · · � kN . However, not

all degree sequences are valid, or graphic, such that some
sequences of integers cannot be used to create a graph. The
Erdős-Gallai theorem (EGT) states that, in addition to the
handshaking lemma (HL),

∑
i ki = 2E , a sequence is graphic

if and only if the Erdős-Gallai inequality (EGI)

n∑
i=1

ki � n(n − 1) +
N∑

i=n+1

min(ki, n) (4)

holds for n ∈ [1,N − 1]. It is trivial to construct degree se-
quences that satisfy the HL (EGI) but do not satisfy the EGI
(HL) and are thus not graphic. For instance, with N = 3 and
{k} = {(1), (1), (1)} the inequality in Eq. (4) is satisfied but
the sum of degrees is not even, while {k} = {(2), (0), (0)}
satisfies the lemma but not Eq. (4).

To construct the networks, vertex i is inserted ki times
into a list for all i ∈ N which is then shuffled. Pairs of ver-
tices are then drawn at random and connected together. In
the limit of large and sparse networks, the probability that
the construction process chooses pairs that are either already
connected through another edge or belong to the same vertex
is vanishingly small. The networks generated according to this
process are locally treelike and contain no short-range loops;
they are also absent of degree correlations.

C. GCM networks

The treelike models described in Secs. II A and II B were
independently extended by Newman and Miller to incorpo-
rate triangular clustering [15–17] and subsequently motifs of
arbitrary topology [18], which we refer to as the generalized
configuration model (GCM).

In the GCM, the degree distribution is replaced by a joint
degree distribution that describes a vertex’s involvement in
motifs such as triangles, squares, four cliques, etc. For in-
stance, a vertex that is involved in k⊥ ordinary edges and
k� triangles is specified by joint degree (k⊥, k�) and the
usual degree is recovered from k = k⊥ + 2k�. Similarly, the
joint degree of a vertex that is a part of k⊥ ordinary edges,
k� triangles, k� squares, and k� four cliques is given by
(k⊥, k�, k�, k�) and occurs with probability p(s, k�, k�, k�);
its ordinary degree is recovered from k = k⊥ + 2k� + 2k� +
3k�, a Diophantine condition [25]. In the GCM it is important
to note that the cycles are still independent of one another
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(edge disjoint), in much the same way that simple edges are
in the original model. This means that the accidental forma-
tion of a four clique during triangle construction through the
choosing of two vertices that are already involved in a triangle
vanishes with large and sparse networks. Thus, upon consid-
ering the characteristic size of each motif (i.e., its number of
vertices), the GCM regenerates the locally treelike property
of the subgraphs. The probability of edge sharing between
independent cycles is dependent on the number of vertices and
triangles in the cycles for a given number of cycles, however.

The generating function formulation for GCM networks is
based on the joint degree distribution and replaces the uni-
variate generating functions from Eqs. (1) and (2) with their
multivariate analogs:

G0(z) =
∞∑

k⊥=0

· · ·
∞∑

kγ =0

p(k⊥, . . . , kγ )zk⊥
⊥ · · · z

kγ

γ , (5)

where z = {z⊥, z	, z�, . . . , zγ }. In the ordinary generating
function model, the excess degree distribution qk defines the
probability that a randomly chosen edge leads to a vertex
of degree k + 1. In the generalized model we must define
an excess degree distribution for each topology in τ, since
traversing an edge of a particular topology does not, in
general, lead to vertices with equivalent joint degrees. The
joint excess degree distribution for an edge of topology τ

is qτ (kτ ) = (kτ + 1)p(kτ\{τ }, kτ + 1)/〈kτ 〉, where the notation
s\{s} excludes element s from set s. Each joint excess degree
distribution is generated as

G1,τ (z) =
∞∑
k⊥

· · ·
∞∑
kγ

q(kτ ) zkτ −1
τ

∏
ν 
=τ

zkν

ν . (6)

To obtain the fraction of the network occupied by the GCC,
S, we must derive the probability uτ ∀τ ∈ {⊥,	,�, . . . , γ }
that neighboring vertices within that particular cycle topology
fail to connect the focal vertex to the GCC. The probability
that the entire τ cycle then fails to connect the focal vertex
to the GCC is gτ (uτ ). For each edge topology that emanates
from the focal vertex, this is simply given by the probability
that each of the neighboring vertices within a single cycle of
topology τ themselves fail to connect to the GCC, raised to
the power of the number of cycles of topology τ the neighbor
vertex belongs to, multiplied by the probability of reaching a
neighbor with a specified joint degree and summed over all
neighbor joint degree configurations. Together this is given as
a self-consistent Dyson-like system of equations for each τ

using G1,τ as

uτ = G1,τ (g⊥, g�, . . . , gγ ). (7)

The fraction of the network occupied by the GCC is now
given by S = 1 − G0(g⊥, g�, . . . , gγ ). The critical point can
be found by linearizing uτ = G1,τ (gmτ

τ ) in ε around uτ =
1 − ετ . To leading order in ετ we have ε = Aε with ε =
[ε⊥, ε�, . . . ]T. The GCC forms at the point when the deter-
minant det(A − I ) vanishes, where I is the identity matrix,
A = [∂G/∂uτ ], and G = [G1,τ , G1,�, . . . , G1,γ ].

It is the purpose of this paper to find analytically and ex-
actly an expression for gτ (uτ ) where τ belongs to a restricted
subset of all topologies; specifically, we restrict our attention

to clique motifs. It must be noted that, whilst the GCM allows
a single vertex to play a simultaneous role in any number
of motifs of different topologies, it is often easier, for our
purposes, to consider reduced systems in which there is only a
single topology present. In such cases, the GCM expressions
reduce to univariate functions similar to Eqs. (1) and (2), albeit
with topology subscripts, τ . This does not, however, diminish
from the generality of our results. Further, we examine the
conditions for graphicality of the joint degree sequences of
clique networks and write necessary conditions by extending
the Erdős-Gallai theorem to GCM networks.

III. GRAPHICALITY OF JOINT DEGREE SEQUENCES
FOR GCM NETWORKS

The degree sequence of a configuration model network is a
sequence of tuples

(k⊥,1, k�,1, . . . , kγ ,1), . . . , (k⊥,N , k�,N , . . . , kγ ,N ), (8)

and, as with ordinary edges, not all sequences lead to the
successful creation of networks and we now consider neces-
sary conditions on a joint degree sequence in order that it is
graphic. It is natural to separate the degree tuples and order the
joint sequence along each topology as k⊥,1 � k⊥,2 � · · · �
k⊥,N for the ordinary edges, k�,1 � k�,2 � · · · � k�,N for
the triangles (and so on). It is clear that the EGT (the EGI
and the HL) must still hold among the overall degrees of the
model for the joint degree sequence to be graphic. However,
the EGT is no longer sufficient to ensure the graphicality of
joint degree sequences according to the extended configura-
tion model. For example, consider an ordered joint degree
sequence describing ordinary edges and triangles {k⊥, k�} =
{(0, 1), (1, 0), (1, 0)}, which is graphic according to the EGI,
Eq. (4), and the HL applied to the overall edges, but is not
according to the extended configuration model. We require the
EGT to hold among the ordinary edges such that

∑
i si = 2H

where H ∈ N is the number of ordinary edges and that

n∑
i=1

k⊥,i � n(n − 1) +
N∑

i=n+1

min(k⊥,i, n) (9)

holds for n ∈ [1,N − 1]. For the triangle degree sequence to
be graphical, we require that the sum of the number of triangle
edges is divisible by 3,

2
N∑
i=1

k�,i = 3T , (10)

which is a modified handshaking lemma, as well as a modified
inequality

2
n∑

i=1

k�,i � n(n − 1) +
N∑

i=n+1

min(2k�,i, n), (11)

which must hold for n ∈ [1,N − 1]. The factor of 2 in
Eq. (11) is due to each vertex consuming two edges per
triangle. Together these conditions extend the Erdős-Gallai
theorem to the tree-triangle model, ensuring that the joint
degree sequence is graphic. This can now readily be extended
to other GCM networks. The necessary conditions for the
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FIG. 1. Six clique has six vertices (blue), six exterior edges
(black), and 6(6 − 1 − 2)/2 = 9 interior edges (red). There are
6(6 − 1)/2 = 15 edges in total.

graphicality of joint degree sequences of configuration mod-
els comprising cliques can now be written by exploiting the
characteristic size of each clique. While is is easy to convince
ourselves that these conditions are necessary conditions for
graphicality, we do not, however, know if these are sufficient
conditions.

IV. CLIQUES

In this section, we derive an exact expression for the prob-
ability gτ,clique (which for brevity we denote simply by gN

henceforth) that a vertex fails to become attached to the GCC
when it is a constituent of a clique of size N . Cliques have
been studied previously using alternative methods; however,
these approaches use numerical recursion to obtain a solution
[15,20]. We frame our method in layers around integer powers
of uτ (which we also simplify for notation brevity to u) in
the range [0, N − 1]. We categorize the edges of the clique as
either exterior or interior edges, depending on whether they
belong to the outer skeleton of the cycle or connect vertices
across the interior, through the shape, respectively; see Fig. 1.
We define an intact graph to indicate that all edges in the
cycle are intact, while a connected graph is one in which there
exists at least one pathway between all vertices. The removal
of a single edge from a clique with N > 2 will ruin the intact
property, but it will still be fully connected.

In the following we reserve j for an index over the number
of edges we have removed from the clique and we reserve r for
an index over the number of vertices n we have removed from
the subgraph. We define another term, a (N − n)-semi-intact
graph, to be the intact clique of codimension-(n) embedded in
the clique of size N with n vertices, and their edges, colored.
In other words, an (N − 1)-semi-intact clique is a clique of
size N with one vertex colored and all edges that connect to
the colored vertex also colored; see Fig. 2. A (N − 2)-semi-
intact clique is a clique of size N with two colored vertices,
whose edges to all other vertices (and between the colored
vertices themselves) are also marked.

FIG. 2. (6-1)-semicomplete clique has one colored vertex (green)
and 6 − 1 = 5 ordinary vertices. The (6 − 1) = 5 edges that emanate
from the colored vertex have also been colored (orange).

With these definitions in place, let us begin the derivation
of the probability that a vertex involved in an N-clique fails to
connect to the GCC through its involvement in the N clique.
The first and arguably the easiest case is the fully connected
graph of size N . With all of its edges intact we pick a focal
vertex and set the remaining (N − 1) vertices to the u state.
Since the graph is connected, if a neighboring vertex was not
in the u state, by definition the focal vertex would be attached
to the GCC. The fully connected, intact clique of size N occurs
with probability

P(N, 0) = uN−1T N T N (N−1−2)/2, (12)

where the notation P(N, n) denotes the total probability of ob-
taining a connected graph of size N with n vertices belonging
to the GCC. Examining these terms, we note that all vertices
other than the focal vertex must not be in the GCC if all
of their edges are occupied. There are N exterior edges and
N (N − 1 − 2)/2 interior edges. There is only one way to pick
this shape, so its multiplicity (the number of different ways the
configuration can occur) is unity.

As remarked above, for N > 2, we can remove edges from
this cycle and it will still be fully connected, although no
longer intact. It happens that we can remove all of the interior
edges, and even one of the exterior edges and still make
connected graphs of size N . If we set one of the interior edges
as unoccupied, we have

P(1 | N, 0) = qN,N (N−1)/2−1uN−1T N

× T N (N−1−2)/2−1(1 − T ), (13)

where qm,k is the number of connected graphs that can be
formed over m labeled vertices with k edges (see Appendix
A). The notation P( j | N, n) indicates the total probability that
the focal vertex remains unattached to the GCC despite its
involvement in a clique of size N that has n vertices attached
to the GCC (whose edges are all unoccupied) and a further j
unoccupied edges among the unattached vertices.
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If we remove a second edge we have

P(2 | N, 0) = qN,N (N−1)/2−2uN−1T N

× T N (N−1−2)/2−2(1 − T )2. (14)

The total probability of removal of j ∈ [0, E (N )] edges, where
E (N ) = N (N − 1 − 2)/2 + 1, is given by

P(N, 0) =
E (N )∑
j=0

P( j | N, 0), (15)

which is

P(N, 0) =
E (N )∑
j=0

qN,N (N−1)/2− ju
N−1T N

× T N (N−1−2)/2− j (1 − T ) j . (16)

If we were to remove another edge from the graph, we would
isolate a vertex. We have therefore enumerated all combina-
tions of graphs that exist on an N clique with N − 1 vertices
that are all unattached to the GCC.

We must now examine the case in which a single vertex
within the clique is connected to the GCC, thus decreasing
the largest power of u by one. There are (N − 1) vertices
that we could remove and all edges that point to the removed
vertex must now be set to (1 − T ), of which there are (N − 1).
Therefore, the (N − 1)-semi-intact graph or codimension-1
subgraph in the N-clique occurs with probability

P(0 | N, 1) = (N − 1)uN−2T N−2

× T (N−1)(N−1−1−2)/2(1 − T )N−1, (17)

where the number of interior edges among the nonremoved
vertices is now (N − 1)(N − 1 − 1 − 2)/2. We can imagine
this as a clique of size (N − 1) embedded within the N clique
and the remaining edges are set to (1 − T ). We recall the (6 −
1)-semi-intact graph from Fig. 2; the removed vertex is green
and the (1 − T ) edges are orange. The leading factor of (N −
1) in Eq. (17) accounts for the choices of vertex we could
remove other than the focal vertex.

As with the intact case, we can remove edges from this
graph and still retain connectivity among the (N − 1) non-
removed vertices. Removal of a single edge occurs with
probability

P(1 | N, 1) = (N − 1)qN−1,XN−1,1 uN−2T N−2

× T (N−1)(N−1−1−2)/2−1(1 − T )N−1+1, (18)

where XN−r, j is the number of edges in the (N − r) clique
minus j:

XN−r, j = (N − r)(N − r − 1)/2 − j. (19)

Let us remove a second edge from this cycle to obtain

P(2 | N, 1) = (N − 1)qN−1,XN−1,2 uN−2T N−2

× T (N−1)(N−4)/2−2(1 − T )N−1+2. (20)

The removal of j ∈ [0, E (N − 1)] edges now proceeds as

P(N, 1) = (N − 1)
E (N−1)∑

j=1

qN−1,XN−1, j u
N−2T N−2

FIG. 3. (6-2)-semi-intact clique has two colored vertices (green)
and 6 − 2 = 5 ordinary vertices (blue). The (N − 1) + (N − 2) = 9
edges that emanate from colored vertices have also been colored
(orange). Notice that the edge that connects the two colored vertices
(yellow) has been colored differently than the other edges. Interface
edges connect blue vertices to green vertices. There are 9-1 interface
edges in this example.

× T (N−1)(N−4)/2− j (1 − T )N−1+ j . (21)

To be clear, this expression is the total probability that a focal
vertex in an N clique with one vertex attached to the GCC and
up to j = (N − 1)(N − 4)/2 + 1 edges set unoccupied fails
to be attached to the GCC.

Further removal of an edge would isolate a vertex and,
hence, we claim that this level is now completed as we have
counted all ways that this state can occur. Although the pat-
tern is largely the same as above, there is a complexity with
the removal of a second vertex. Currently, we absorb all of
the removed vertex’s edges into the (1 − T ) state, since an
occupied edge would by definition connect the focal vertex to
the GCC. However, when a second vertex is removed, there
is a connection between the two removed vertices that need
not be (1 − T ). Therefore, we must subtract from this power
those connections between removed vertices. This is simply
the number of edges in a clique of size equal to the number of
removed vertices, n. We introduce the term interface edges
to be edges that connect removed vertices to nonremoved
vertices; see Fig. 3.

The number of interface edges is given by the total number
of edges that the removed vertices have minus the number of
edges that connect removed vertices to each other. If there are
n < N removed vertices, then there are a total of

n∑
i=1

(N − i)

colored edges (orange plus yellow in Fig. 3), of which a total
of

n(n − 1)

2
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will point to other removed vertices (yellow in Fig. 3). Hence
the total number, ω(r), of interface edges (orange) is

ω(r) =
r∑

i=1

(N − i) − r(r − 1)

2
. (22)

For subsequent vertex removals, the number of edges that are
required to be (1 − T ) is given by the number of interface
edges. In the case that n = 1 we find that the number of inter-
face edges is N − 1, in agreement with the previous workings.

We will now remove a second vertex from the N clique and
we begin by describing the (N − 2)-semi-intact graph, from
which we will then remove edges in a sequential and now
hopefully familiar fashion. There are (N − 1) ways to remove
the first vertex followed by

(N
2

)
ways to remove the second

vertex, so the binomial coefficient will lead the expression.
The chain of vertices not in the GCC now occurs with prob-
ability uN−3 comprising N less two removed vertices and one
focal vertex. The outer T skeleton of the (N − 2)-semi-intactd
graph has probability T N−3. The number of interior edges
among present vertices is then (N − 2)(N − 2 − 1 − 2)/2.
The number of interface edges is

2∑
i=1

(N − i) − 2(2 − 1)

2
= 2(N − 2).

All together, the expression for a clique of size N with two
removed vertices (a semi-intact graph of codimension 2) is
given by

P(0 | N, 2) =
(

N − 1

2

)
uN−3T N−3T (N−2)(N−2−1−2)/2

× (1 − T )2(N−2). (23)

We can then remove all of the interior edges among the non-
removed vertices, as well as a single exterior edge, and place
them into the (1 − T ) state. Removing one edge we have

P(1 | N, 2) =
(

N − 1

2

)
qN−2,XN−2,1 uN−3T N−3

× T (N−2)(N−2−1−2)/2−1(1 − T )2(N−2)+1. (24)

Hence the removal of j ∈ [0, E (N − 2)] such edges yields the
total probability that a vertex remains unattached to the GCC
despite its involvement in an N clique that has two vertices
attached to the GCC:

P(N, 2) =
(

N − 1

2

) E (N−2)∑
j=1

qN−2,XN−2, j u
N−3T N−3

× T (N−2)(N−2−1−2)/2− j (1 − T )2(N−2)+ j . (25)

Subsequent loss of edges will isolate a further vertex and,
hence, this layer is completely enumerated.

We have now encountered all the sufficient logic that we
require for the correct abstraction of the formula to account
for arbitrary numbers of removed vertices and edges from a
clique of size N . We note that the final expression will simply
be the summation of all of the total probabilities that a focal
vertex fails to be attached to the GCC given its involvement in

the N clique, which is

gN =
N−1∑
r=0

E (N−r)∑
j=0

P( j | N, r). (26)

For a clique of size N , let there be n removed vertices.
There are

(N−1
r

)
ways to remove the r � n vertices sequen-

tially. The power of u is given by (N − r − 1); this is the
power of the exterior T also; the interior power of T is given
by (N − r). The final expression therefore is given by

gN =
N−1∑
r=0

(
N − 1

r

) E (N−r)∑
j=0

qN−r,XN−r, j (uT )N−r−1

× T E (N−r)−1− j (1 − T )ω(r). (27)

This equation is the main result of this paper. We now have
a closed form expression for each gN required to compute
Eq. (7) and thus can find the size of the GCC for GCM
networks comprised of clique subgraphs. Upon comparison
of the polynomials generated by Eq. (27) to those given by
Newman in [15], we find exact agreement when u = 1, which
we show in Appendix C. Additionally, we display the results
of our formula for cliques with six vertices or fewer in Ap-
pendix C, Table I.

Percolation threshold

We now turn our attention to the location of the critical
point for the formation of a GCC among networks comprised
entirely of N cliques during bond percolation. From the Taylor
series of Eq. (3) in Sec. I, we understand that, in order to
obtain the percolation properties of the network, we have to
evaluate the derivative of gN with respect to u. This derivative
is found to be

∂gN

∂u
=

N−1∑
r=0

(
N − 1

r

)
(N − r − 1)

E (N−r)∑
j=0

qN−r,XN−r, j

× (uT )N−r−2T E (N−r)− j (1 − T )ω(r). (28)

The percolation threshold is then obtained by evaluating the
derivative at u = 1, and following a similar analysis to the
treelike topology we obtain

∂gN

∂u

∣∣∣∣
u=1

〈k2 − k〉
〈k〉 = 1, (29)

where 〈k〉 is the mean number of cliques a vertex belongs to.
For example, the derivative for three cliques is found to be

∂g3

∂u
= 2T (1 − T )2 + 6uT 2(1 − T ) + 2uT 3. (30)

Evaluated at u = 1 and inserted into Eq. (29) we have

2(T 2 + T − T 3)
〈k2

� − k�〉
〈k�〉 − 1 = 0. (31)

For networks in which a vertex’s membership in a given clique
size is Poisson distributed, we can reduce 〈k2

� − k�〉/〈k�〉 to
simply 〈k�〉. Further, factorizing the prefactor in T we have
2T (1 + T − T 2)〈k�〉 − 1 = 0. Using Gauss’s lemma, this cu-
bic expression is reducible in T into the quadratic form whose
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roots yield the critical transmissibilities of the model and,
hence, the critical point occurs at

T ∗
Poisson = −1 + 2

√
1 + 1

〈k�〉 . (32)

We repeat the calculation for the four clique to obtain the
following polynomial:

∂g4

∂u

∣∣∣∣
u=1

= 3T (−2T 5 + 7T 4 − 7T 3 + 2T + 1). (33)

The Galois group of the quintic part is the symmetric group,
S5, and hence a root cannot be found. It is unlikely that perco-
lation properties of larger cliques can be resolved analytically
due to the Abel-Ruffini theorem.

V. CONCLUSION

In this paper we have derived an exact equation that de-
scribes the probability that a vertex fails to be connected to
the percolating cluster during bond percolation despite its role
in one or more clique subgraphs. In addition, we show how
to calculate the critical bond occupancy probability for these
graphs and unpacked the formula for cliques with six vertices
or fewer in Table I. We compared our formula to other results
in the literature, where they existed, and found our formula
in agreement to arbitrary precision, thereby concluding its
exactness. We also showed that the conditions for the exis-
tence of a GCC within these models can be found following
a straightforward recipe; however, the polynomials obtained
are unlikely to admit a solvable root in all but the simplest
of cases. We show this condition for three and four cliques,
the latter yielding a quintic polynomial with Galois group S5.
For N > 6, there are classes of homogeneous graphs between
the weak cycle and the clique. It remains to be shown that an
encompassing formula can be written to collect these classes
into a single expression. We describe some of the challenges
faced in pursuit of this in Appendix B.

A crucial question is how to apply this exact formulation
to the study of inhomogeneous cycles whose vertices are no
longer degree equivalent. In this case the expressions for gτ

are no longer univariate functions, but, instead, have as many
uν variables as there are nonisomorphic sites in the motif.
Currently, the only known approach to generate these expres-
sions exactly is an exponentially slow exhaustive enumeration
[18]. This application is nontrivial and would be an extremely
important addition to the model. We hope that this result will
ignite new areas of research within the study of random graphs
and their applications and provide meaningful contributions to
a wide range of topics.
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APPENDIX A: qn,k

The number of connected graphs of n labeled vertices over
k edges is given by qn,k . This quantity has a well known
recursion formula as well as a closed-form analytical solution
[15,24,26,27]. Given the importance of this quantity to the
contents of this paper, we will review this derivation now.

Let Q be the combinatorial class of connected graphs and G
the combinatorial class of all labeled graphs [28]. The relation
between these two classes is the set of relation: a graph is a
set of connected components. This indicates that the mixed
exponential generating function G(z, y) of G can be generated
from Q(z, y) according to the following relationship:

G(z, y) = exp Q(z, y). (A1)

For m vertices, there are a total of
(m

2

) = m(m − 1)/2 potential
edges not allowing self-loops or multiedges between the ver-
tices. This set has 2(m

2 ) possible partitions. Therefore, counting
vertices (with z) and edges (with y) we have that

G(z, y) =
∑

m

∑
l

1

m!

((m
2

)
l

)
zmyl . (A2)

From the binomial theorem we find

G(z, y) =
∑

m

zm

m!
(1 + y)(

m
2 ) (A3)

or

G(z, y) = 1 +
∑
m�1

(1 + y)m(m−1)/2 zm

m!
. (A4)

This yields an expression for the entire series of connected
labeled graphs, Q(z, y), since Q(z, y) = lnG(z, y) such that we
obtain

Q(z, y) = ln

(
1 +

∑
m�1

(1 + y)m(m−1)/2 zm

m!

)
. (A5)

We can then perform a series expansion of the logarithm using

ln(1 + x) =
∞∑

k=0

(−1)k+1

k
xk

to obtain

Q(z, y) =
∑
l�1

(−1)l+1 1

l

(∑
m�1

(1 + y)m(m−1)/2 zm

m!

)l

. (A6)

We now examine the case of n vertices and k edges where
k � n − 1 by extracting the coefficient qn,k of [zn][yk]. Note
that the term in the parentheses has minimum degree l in z,
allowing us to disregard the series beyond l > n. This yields
the formula for the number of connected labeled graphs with
n vertices and k edges as

qn,k = n![zn][yk]
n∑

l=1

(−1)l+1 1

l

×
(

n∑
m=1

(1 + y)m(m−1)/2 zm

m!

)l

. (A7)
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FIG. 4. 16 graphs that can be made among four labeled vertices
with three edges is given by q4,3.

The coefficient of zn is given by the integer partitions λ � n of
length l , multiplied by their multiplicity (number of composi-
tions)

1

n!

(
n

λ

)(
l

f

)
, (A8)

where for partition λ we have λ = 1 f1 2 f2 3 f3 · · · and so on,
such that we have

qn,k =
∑
λ�n

(−1)l+1

l

(
n

λ

)(
l

f

)
(1 + y)

∑
λi

(λi
2 ) (A9)

for λi ∈ λ. The coefficient of yk is found from the binomial
theorem to yield a final expression for qn,k as

qn,k =
∑
λ�n

(−1)l+1

l

(
n

λ

)(
l

f

)(∑
λi

λi(λi − 1)/2

k

)
. (A10)

As an example of qn,k in Eq. (27), we examine the coeffi-
cients of the four clique when there are no removed vertices,
that is, when n = 0. From Table I, we observe the leading
coefficients of the terms in u3 are q4,k = 1, 6, 15, and 16,
which correspond to the number of graphs that can be made
with k = 6, 5, 4, 3 edges, respectively. The set of graphs that
can be made from q4,3 is presented in Fig. 4.

APPENDIX B: OTHER HOMOGENEOUS CYCLES

In this Appendix we explore other homogeneous cycles
that are not cliques but whose vertices are all degree equiva-
lent. We demonstrate that the percolation expression for these
cycles is not readily obtained in closed form, unlike the ex-
pressions for simple cycles and cliques. Any formula that can
be obtained for a class of cycles is distinct from the expres-
sions for other, seemingly related, cycles. For this purpose,
consider a cycle comprised of N � 6 ∈ 2N degree equivalent
vertices in which each vertex has degree 3; see cycle B in

FIG. 5. Four homogeneous nonisomorphic graphs of size N = 6.
The simple cycle (a) has no interior edges; (b) and (c) show two
graphs with an increasing number of interior edges until the clique is
obtained (d).

Fig. 5. (Note the cycle cannot be formed for odd N .) Applica-
tion of the enumeration scheme developed in the text to obtain
the probability that a particular focal vertex does not become
attached to the GCC through its role in this cycle proceeds
as follows. The cycle can lose up to N/2 + 1 edges before
a vertex is isolated; the probability that j ∈ [0, N/2 + 1] is
removed is given by

P( j | N, 0) = qN,N+N/2− ju
N−1T N T N/2− j (1 − T ) j (B1)

and hence the total probability P(N, 0) that we can still retain
a connected graph despite the removal of edges is

P(N, 0) =
N/2+1∑

j=0

P( j | N, 0). (B2)

With any further edge removal, a vertex is pruned from the
cycle. The resulting cycle has N − 3 deg(3) sites and 3 deg(2)
sites remaining.

There are now N/2 − 1 interior edges and N − 2 exterior
edges remaining from the original set of edges. It happens
that we can remove all of the remaining interior edges and
proceed without vertex isolation; however, we cannot remove
any of the exterior edges. Thus the total probability P(N, 1)
that describes the cycle with one vertex removed is given by

P(N, 1) = (N − 1)
N/2−1∑

j=0

qN−1,N−2+N/2−1− ju
N−2

× T N−2T N/2−1− j (1 − T ) j+3. (B3)

At this point, the cycle now contains mixed degree vertices.
We must distinguish upon whether the vertex we now re-
move has degree 2 or degree 3 as removing either vertex will
lead to different probabilities for successive counting. Further,
considering N = 10, supposing we had removed a degree 3
vertex, it matters whether the neighbors of that vertex are
degree 2 or 3 as, in both cases, the resulting probabilities for
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further counting are nonequivalent. And, while it is theoret-
ically possible to enumerate the combinations into a single
expression, it seems unlikely that such a formula would be
readily derived, or that it would be transferable to other related
cycles. Similar complexities arise for the other homogeneous
cycle in Fig. 5 and are the basis of the complexity in enumer-
ating percolation formulas for inhomogeneous cycles.

APPENDIX C: DISPLAYED CLIQUE FORMULAS

The expressions for cliques of six vertices or fewer are
shown in Table I. It is clear upon comparison that the qn,kuxT y

structure of the polynomials appears to repeat across the or-
ders of increasing clique size. For instance, the polynomial of
u4 can be compared between the N = 5 and N = 6 equations;
however, in each case, the exponent of the interface edges,
(1 − T )z, varies.

In the Introduction we stated that Newman had also found
these polynomials previously for clique networks. To compare
our polynomials to those derived by Newman [15], we first set
u = 1 in Eq. (27). Newman’s method depends on the proba-
bility, P(k | N ), that a particular vertex belongs to a connected
cluster of k vertices in an N clique, including itself. This is
given by Eq. (7) in [15] as

P(k | N ) =
(

N − 1

k − 1

)
(1 − T )k(N−k)P(k | k), (C1)

where we have relabeled Newman’s p → T and q → 1 − T
to be in keeping with our notation. These conditional proba-
bilities are evaluated via recursion from an initial condition of
P(1 | 1) and

P(k | k) = 1 −
k−1∑
l=0

P(l | k). (C2)

For the purpose of comparison to our closed form expression,
we have the following equality:

gN |uN =1 =
N∑

k=1

P(k | N ). (C3)

While it is trivial to confirm these formulas are equivalent
to Eq. (27) for small clique sizes, we will explicitly show
the agreement of our polynomials with Newman’s for N = 6.
Unpacking Newman’s expressions we find

g6 = P(1 | 6) + P(2 | 6) + P(3 | 6) + P(4 | 6)

+ P(5 | 6) + P(6 | 6), (C4)

which evaluates to

g6 =
(

6 − 1

1 − 1

)
q1(6−1)P(1 | 1) +

(
6 − 1

2 − 1

)
q2(6−2)P(2 | 2)

+
(

6 − 1

3 − 1

)
q3(6−3)P(3 | 3)

+
(

6 − 1

4 − 1

)
q4(6−4)P(4 | 4) +

(
6 − 1

5 − 1

)
q5(6−5)P(5 | 5)

+
(

6 − 1

6 − 1

)
q6(6−6)P(6 | 6). (C5)

Simply inserting the values of P(k | k) from Table 1 in [15]
and comparing this to the result for N = 6 from Eq. (27) in
Table I confirms the exactness of our closed form expression.
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