234 research outputs found
The PSF.p54nrb complex is a novel Mnk substrate that binds the mRNA for tumor necrosis factor alpha
To identify new potential substrates for the MAP kinase signal-integrating kinases (Mnks), we employed a proteomic approach. The Mnks are targeted to the translational machinery through their interaction with the cap-binding initiation factor complex. We tested whether proteins retained on cap resin were substrates for the Mnks in vitro, and identified one such protein as PSF (the PTB (polypyrimidine tract-binding protein)-associated splicing factor). Mnks phosphorylate PSF at two sites in vitro, and our data show that PSF is an Mnk substrate in vivo. We also demonstrate that PSF, together with its partner, p54nrb, binds RNAs that contain AU-rich elements (AREs), such as those for proinflammatory cytokines (e.g. tumor necrosis factor ? (TNF?)). Indeed, PSF associates specifically with the TNF? mRNA in living cells. PSF is phosphorylated at two sites by the Mnks. Our data show that Mnk-mediated phosphorylation increases the binding of PSF to the TNF? mRNA in living cells. These findings identify a novel Mnk substrate. They also suggest that the Mnk-catalyzed phosphorylation of PSF may regulate the fate of specific mRNAs by modulating their binding to PSF·p54nrb
The regulation of protein synthesis and translation factors by CD3 and CD28 in human primary T lymphocytes
BACKGROUND: Activation of human resting T lymphocytes results in an immediate increase in protein synthesis. The increase in protein synthesis after 16–24 h has been linked to the increased protein levels of translation initiation factors. However, the regulation of protein synthesis during the early onset of T cell activation has not been studied in great detail. We studied the regulation of protein synthesis after 1 h of activation using αCD3 antibody to stimulate the T cell receptor and αCD28 antibody to provide the co-stimulus. RESULTS: Activation of the T cells with both antibodies led to a sustained increase in the rate of protein synthesis. The activities and/or phosphorylation states of several translation factors were studied during the first hour of stimulation with αCD3 and αCD28 to explore the mechanism underlying the activation of protein synthesis. The initial increase in protein synthesis was accompanied by activation of the guanine nucleotide exchange factor, eukaryotic initiation factor (eIF) 2B, and of p70 S6 kinase and by dephosphorylation of eukaryotic elongation factor (eEF) 2. Similar signal transduction pathways, as assessed using signal transduction inhibitors, are involved in the regulation of protein synthesis, eIF2B activity and p70 S6 kinase activity. A new finding was that the p38 MAPK α/β pathway was involved in the regulation of overall protein synthesis in primary T cells. Unexpectedly, no changes were detected in the phosphorylation state of the cap-binding protein eIF4E and the eIF4E-binding protein 4E-BP1, or the formation of the cap-binding complex eIF4F. CONCLUSIONS: Both eIF2B and p70 S6 kinase play important roles in the regulation of protein synthesis during the early onset of T cell activation
Phosphorylation of elongation factor-2 from the lepidopteran insect, spodoptera frugiperda
AbstractIn mammalian cells, protein synthesis can be regulated at the level of elongation by the phosphorylation of elongation factor 2 (eEF-2) by a highly specific Ca2+/calmodulin-dependent kinase. In this report, we show that eEF-2 from a cell line derived from the insect, Spodoptera frugiperda, is a substrate for mammalian eEF-2 kinase and that phosphorylation is Ca2+-dependent. Furthermore, two-dimensional peptide mapping shows that the kinase phosphorylates the same sites in Spodoptera eEF-2 as those phosphorylated in the rabbit protein. However, we were unable to detect an eEF-2 kinase in Spodoptera cells
On the Diversification of the Translation Apparatus across Eukaryotes
Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life
Ablation of elongation factor 2 kinase enhances heat-shock protein 90 chaperone expression and protects cells under proteotoxic stress
Eukaryotic elongation factor 2 kinase (eEF2K) negatively regulates the elongation stage of mRNA translation and is activated under different stress conditions to slow down protein synthesis. One effect of eEF2K is to alter the repertoire of expressed proteins, perhaps to aid survival of stressed cells. Here, we applied pulsed stable isotope labeling with amino acids in cell culture (SILAC) to study changes in the synthesis of specific proteins in human lung adenocarcinoma (A549) cells in which eEF2K had been depleted by an inducible shRNA. We discovered that levels of heat-shock protein 90 (HSP90) are increased in eEF2K-depleted human cells as well as in eEF2K-knockout (eEF2K-/-) mouse embryonic fibroblasts (MEFs). This rise in HSP90 coincided with an increase in the fraction of HSP90 mRNAs associated with translationally active polysomes, irrespective of unchanged total HSP90 levels. These results indicate that blocking eEF2K function can enhance expression of HSP90 chaperones. In eEF2K-/- mouse embryonic fibroblasts (MEFs), inhibition of HSP90 by its specific inhibitor AUY922 promoted the accumulation of ubiquitinated proteins. Notably, HSP90 inhibition promoted apoptosis of eEF2K-/- MEFs under proteostatic stress induced by the proteasome inhibitor MG132. Up-regulation of HSP90 likely protects cells from protein folding stress, arising, for example, from faster rates of polypeptide synthesis due to the lack of eEF2K. Our findings indicate that eEF2K and HSPs closely cooperate to maintain proper proteostasis and suggest that concomitant inhibition of HSP90 and eEF2K could be a strategy to decrease cancer cell survival
Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells - Activation of protein kinase B by wortmannin-sensitive and -insensittve mechanisms
Previous studies using L6 myotubes have suggested that glycogen synthase kinase-3 (GSK-3) is phosphoryl ated and inactivated in response to insulin by protein kinase B (PKB, also known as Akt or RAG) (Cross, D, A, E., Alessi, D, R., Cohen, P., Andjelkovic, M., and Hemmings, B, A. (1995) Nature 378, 785-789), In the present study, marked increases in the activity of PKB have been shown to occur in insulin-treated rat epididymal fat cells with a time course compatible with the observed decrease in GSK-3 activity, Isoproterenol, acting primarily through beta(3)-adrenoreceptors, was found to decrease GSK-3 activity to a similar extent (approximately 50%) to insulin, However, unlike the effect of insulin, the inhibition of GSK by isoproterenol was not found to be sensitive to inhibition by the phosphatidylinositol 3'-kinase inhibitors, wortmannin or LY 294002, The change in GSK-3 activity brought about by isoproterenol could not be mimicked by the addition of permeant cyclic AMP analogues or forskolin to the cells, although at the concentrations used, these agents were able to stimulate lipolysis. Isoproterenol, but again not the cyclic AMP analogues, was found to increase the activity of PKB, although to a lesser extent than insulin. While wortmannin abolished the stimulation of PKB activity by insulin, it was without effect on the activation seen in response to isoproterenol, The activation of PKB by isoproterenol was not accompanied by any detectable change in the electrophoretic mobility of the protein on SDS-polyacrylamide gel electrophoresis. It would therefore appear that distinct mechanisms exist for the stimulation of PKB by insulin and isoproterenol in rat fat cells
Constitutively-active Rheb mutants [T23M] and [E40K] drive increased production and secretion of recombinant protein in Chinese hamster ovary cells
Monoclonal antibodies (mAbs) are high value agents used for disease therapy (‘biologic drugs’) or as diagnostic tools which are widely used in the health care sector. They are generally manufactured in mammalian cells, in particular Chinese hamster ovary (CHO) cells cultured in defined media, and are harvested from the medium. Rheb is a small GTPase which, when bound to GTP, activates mechanistic target of rapamycin complex 1 (mTORC1), a protein kinase that drives anabolic processes including protein synthesis and ribosome biogenesis. Here we show that certain constitutively-active mutants of Rheb drive faster protein synthesis in CHO cells and increase the expression of proteins involved in the processing of secreted proteins in the endoplasmic reticulum, which expands in response to expression of Rheb mutants. Active Rheb mutants, in particular Rheb[T23M], drive increased cell number under serum-free conditions similar to those used in the biotechnology industry. Rheb[T23M] also enhances the expression of the reporter protein luciferase and, especially strongly, the secreted Gaussia luciferase. Moreover, Rheb[T23M] markedly (2-3 fold) enhances the amount of this luciferase and of a model immunoglobulin secreted into the medium. Our data clearly demonstrate that expressing Rheb[T23M] in CHO cells provides a simple approach to promoting their growth in defined medium and the production of secreted proteins of high commercial value
BDNF stimulation of protein synthesis in cortical neurons requires the map kinase-interacting kinase MNK1
Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m7GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons
Quantitative non-canonical amino acid tagging based proteomics identifies distinct patterns of protein synthesis rapidly induced by hypertrophic agents in cardiomyocytes, revealing new aspects of metabolic remodeling
Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. Pathological myocardial growth is a risk factor for cardiac failure to which faster protein synthesis is a major driving element. We aimed to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are due to alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other non-dividing primary cells. To address this, an optimized QuaNCAT LC/MS method was used to selectively quantify newly synthesized proteins in such cells. The study showed both classical (phenylephrine; PE) and more recent (insulin) pathological cardiac hypertrophic agents increased the synthesis of proteins involved in glycolysis, the Krebs cycle / beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was upregulated by signaling through mTORC1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was upregulated in rat hearts following TAC. This isoform possesses specific regulatory properties that may be involved in metabolic remodeling and as a novel candidate biomarker. Levels of translation factor eEF1 also increased during TAC, likely contributing to faster cell mass accumulation. Interestingly, PKM2 and eEF1 were not up-regulated in pregnancy or exercise induced CH, suggesting them as pathological CH specific markers. The study methods may be of utility to the examination of protein synthesis in primary cells
Diaryltriazenes as antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA) and Mycobacterium smegmatis
Diaryltriazene derivatives were synthesized and evaluated for their antimicrobial properties. Initial experiments showed some of these compounds to have activity against both methicillin-resistant strains of Staphylococus aureus (MRSA) and Mycobacterium smegmatis, with MICs of 0.02 and 0.03 μg/mL respectively. Those compounds with potent anti-staphylococcal and anti-mycobacterial activity were not found to act as growth inhibitors of mammalian cell lines or yeast. Furthermore, we demonstrated that one of the most active anti-MRSA diaryltriazene derivatives was subject to very low frequencies of resistance at <10−9. Whole genome sequencing of resistant isolates identified mutations in the enzyme that lysylates phospholipids. This could result in the modification of phospholipid metabolism and consequently the characteristics of the staphylococcal cell membrane, ultimately modifying the sensitivity of these pathogens to triazene challenge. Our work has therefore extended the potential range of triazenes, which could yield novel antimicrobials with low levels of resistance
- …