87 research outputs found
MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research
Motivation: Liquid chromatography–mass spectrometry (LC/MS) is a key technique in metabolomics. Since the efficient assignment of MS signals to true biological metabolites becomes feasible in combination with in vivo stable isotopic labelling, our aim was to provide a new software tool for this purpose
Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants
The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v) mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v)), with and without the addition of 0.1% (v/v) formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem) and 57% (ear) of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone
Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study
Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course.
Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed.
Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients.
Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19
Globally altered epigenetic landscape and delayed osteogenic differentiation in H3.3-G34W-mutant giant cell tumor of bone
Abstract
The neoplastic stromal cells of giant cell tumor of bone (GCTB) carry a mutation in H3F3A, leading to a mutant histone variant, H3.3-G34W, as a sole recurrent genetic alteration. We show that in patient-derived stromal cells H3.3-G34W is incorporated into the chromatin and associates with massive epigenetic alterations on the DNA methylation, chromatin accessibility and histone modification level, that can be partially recapitulated in an orthogonal cell line system by the introduction of H3.3-G34W. These epigenetic alterations affect mainly heterochromatic and bivalent regions and provide possible explanations for the genomic instability, as well as the osteolytic phenotype of GCTB. The mutation occurs in differentiating mesenchymal stem cells and associates with an impaired osteogenic differentiation. We propose that the observed epigenetic alterations reflect distinct differentiation stages of H3.3 WT and H3.3 MUT stromal cells and add to H3.3-G34W-associated changes
Sovereign defaults in court
For centuries, defaulting governments were immune from legal action by foreign creditors. This paper shows that this is no longer the case. Building a dataset covering four decades, we find that creditor lawsuits have become an increasingly common feature of sovereign debt markets. The legal developments have strengthened the hands of creditors and raised the cost of default for debtors. We show that legal disputes in the US and the UK disrupt government access to international capital markets, as foreign courts can impose a financial embargo on sovereigns. The findings are consistent with theoretical models with creditor sanctions and suggest that sovereign debt is becoming more enforceable. We discuss how the threat of litigation affects debt management, government willingness to pay, and the resolution of debt crises
Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research
Many metabolomics studies use mixtures of (acidified) methanol and water for sample extraction. In the present study, we investigated if the extraction with methanol can result in artifacts. To this end, wheat leaves were extracted with mixtures of native and deuterium-labeled methanol and water, with or without 0.1% formic acid. Subsequently, the extracts were analyzed immediately or after storage at 10 °C, −20 °C or −80 °C with an HPLC-HESI-QExactive HF-Orbitrap instrument. Our results showed that 88 (8%) of the >1100 detected compounds were derived from the reaction with methanol and either formed during sample extraction or short-term storage. Artifacts were found for various substance classes such as flavonoids, carotenoids, tetrapyrrols, fatty acids and other carboxylic acids that are typically investigated in metabolomics studies. 58 of 88 artifacts were common between the two tested extraction variants. Remarkably, 34 of 73 (acidified extraction solvent) and 33 of 73 (non-acidified extraction solvent) artifacts were formed de novo as none of these meth(ox)ylated metabolites were found after extraction of native leaf samples with CD3OH/H2O. Moreover, sample extracts stored at 10 °C for several days, as can typically be the case during longer measurement sequences, led to an increase in both the number and abundance of methylated artifacts. In contrast, frozen sample extracts were relatively stable during a storage period of one week. Our study shows that caution has to be exercised if methanol is used as the extraction solvent as the detected metabolites might be artifacts rather than natural constituents of the biological system. In addition, we recommend storing sample extracts in deep freezers immediately after extraction until measurement
- …