23 research outputs found

    Reduced TRPC Channel Expression in Psoriatic Keratinocytes Is Associated with Impaired Differentiation and Enhanced Proliferation

    Get PDF
    Psoriasis is a characteristic inflammatory and scaly skin condition with typical histopathological features including increased proliferation and hampered differentiation of keratinocytes. The activation of innate and adaptive inflammatory cellular immune responses is considered to be the main trigger factor of the epidermal changes in psoriatic skin. However, the molecular players that are involved in enhanced proliferation and impaired differentiation of psoriatic keratinocytes are only partly understood. One important factor that regulates differentiation on the cellular level is Ca2+. In normal epidermis, a Ca2+ gradient exists that is disturbed in psoriatic plaques, favoring impaired keratinocyte proliferation. Several TRPC channels such as TRPC1, TRPC4, or TRPC6 are key proteins in the regulation of high [Ca2+]ex induced differentiation. Here, we investigated if TRPC channel function is impaired in psoriasis using calcium imaging, RT-PCR, western blot analysis and immunohistochemical staining of skin biopsies. We demonstrated substantial defects in Ca2+ influx in psoriatic keratinocytes in response to high extracellular Ca2+ levels, associated with a downregulation of all TRPC channels investigated, including TRPC6 channels. As TRPC6 channel activation can partially overcome this Ca2+ entry defect, specific TRPC channel activators may be potential new drug candidates for the topical treatment of psoriasis

    The Effect of Herbal Medicinal Products on Psoriasis-Like Keratinocytes

    No full text
    Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and expression of pro-inflammatory cytokines in the epidermis. New biological drugs were developed for the systemic treatment of moderate to severe psoriasis. However, products for the topical treatment of mild psoriasis are still required. Here, we examined the effect of natural compounds on psoriasis-like keratinocytes in vitro and ex vivo. Psoriasis-like keratinocytes were generated by treating human primary keratinocytes with the psoriasis-associated cytokines IL-17A, TNF-α and IL-22. Initially, 10 botanical extracts from Ayurvedic Medicine, Traditional Chinese Medicine, Northern American traditional medicine and Occidental Monastic Medicine were investigated using BrdU assays and IL-6 and IL-8 ELISAs. Curcuma amada, Humulus lupulus and Hypericum perforatum turned out to be the most effective plant extracts. In vitro, the plant extracts inhibited the expression of anti-microbial peptides (β-defensin 2), the hyperproliferation marker keratin 17, the glucose transporter 1 and downregulated the nuclear translocation of NF-κB and pSTAT3. In an ex vivo psoriasis model, Humulus lupulus displayed the most prominent anti-proliferative and anti-inflammatory effect. In conclusion, among the plant extracts investigated, Humulus lupulus showed the most promising anti-psoriatic effect. It is an interesting candidate for topical psoriasis treatment that should be further studied in clinical trials

    Anti-Inflammatory Effects of Agrimoniin-Enriched Fractions of Potentilla erecta

    No full text
    Potentilla erecta (PE) is a small herbaceous plant with four yellow petals belonging to the Rosaceae family. The rhizome of PE has traditionally been used as an antidiarrheal, hemostatic and antihemorrhoidal remedy. PE contains up to 20% tannins and 5% ellagitannins, mainly agrimoniin. Agrimoniin is a hydrolyzable tannin that is a potent radical scavenger. In this study we tested the anti-inflammatory effect of four PE fractions with increasing amounts of agrimoniin obtained by Sephadex column separation. First, we analyzed in HaCaT keratinocytes the expression of cyclooxygenase-2 (COX-2) induced by ultraviolet-B (UVB) irradiation. As COX-2 catalyzes the metabolism of arachidonic acid to prostanoids such as PGE2, we also measured the PGE2 concentration in cell culture supernatants. PE inhibited UVB-induced COX-2 expression in HaCaT cells and dose-dependently reduced PGE2. The PE fraction with the highest agrimoniin amount (PE4) was the most effective in this experiment, whereas fraction PE1 containing mainly sugars had no effect. PE4 also dose dependently inhibited the phosphorylation of the epidermal growth factor receptor (EGFR) which plays a crucial role in UVB-mediated COX-2 upregulation. A placebo-controlled UV-erythema study with increasing concentrations of PE4 demonstrated a dose dependent inhibition of UVB-induced inflammation in vivo. Similarly, PE4 significantly reduced UVB-induced PGE2 production in suction blister fluid in vivo. In summary, PE fractions with a high agrimoniin content display anti-inflammatory effects in vitro and in vivo in models of UVB-induced inflammation

    Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation.

    Get PDF
    BACKGROUND: Allergic contact dermatitis (ACD) represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS) model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS) and a concomitant breakdown of the extracellular matrix (ECM) component hyaluronic acid (HA) to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. CONCLUSIONS/SIGNIFICANCE: These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD

    Hop Extract Acts as an Antioxidant with Antimicrobial Effects against Propionibacterium Acnes and Staphylococcus Aureus

    No full text
    Acne is associated with hyperkeratosis, elevated levels of skin sebum and growth of Propionibacterium acnes (P. acnes) and Staphylococcus aureus (S. aureus). Furthermore, P. acnes promotes inflammation by inducing IL-6 production and oxidative stress. The aim of this study was to assess the antioxidant, anti-inflammatory and antibacterial potential of a hop-CO2-extract with 50% humulone and lupulone. The susceptibility of P. acnes and S. aureus to the hop extract was tested by using the broth microdilution technique. The minimal inhibitory concentrations (MIC) for P. acnes and S. aureus were 3.1 and 9.4 µg/mL, respectively. In addition, the hop extract showed an antioxidative effect with a half maximal inhibitory concentration (IC50) of 29.43 µg/mL as well as additional anti-inflammatory effects by reducing the IL-6 expression (IC50: 0.8 µg/mL). In addition, a gel formulation with 0.3% hop extract (w/w) had antibacterial activity against P. acnes and S. aureus (inhibition zone value: 5.5 mm and 3 mm, respectively) which was significantly superior to the placebo gel. The positive control (a gel with the antibiotic clindamycin) showed an inhibition zone of 9 mm. Due to its antioxidant, anti-inflammatory and antibacterial effects hop extract might be a treatment option for acne-prone skin

    Brodalumab Versus Guselkumab in Patients with Moderate-to-Severe Psoriasis with an Inadequate Response to Ustekinumab: A Randomized, Multicenter, Double-Blind Phase 4 Trial (COBRA)

    No full text
    Abstract Introduction Despite improved treatment options for plaque psoriasis within the last decades, some patients still have an inadequate response to treatment. Direct clinical evaluation between therapies used after biologic failure could facilitate physicians’ choice of treatment. Methods COBRA (NCT04533737) was a randomized (1:1), blinded (patient and assessor), 28-week, active-comparator trial conducted in Europe from December 2020 to December 2022. The objective was to compare the efficacy and safety of brodalumab versus guselkumab in adults with moderate-to-severe plaque psoriasis and inadequate response to ustekinumab. Patients received either brodalumab 210 mg or guselkumab 100 mg. The primary [having Psoriasis Area and Severity Index (PASI)-100 response at week 16] and key secondary (time to PASI-100 response) endpoints were tested in a fixed sequence. Results Due to delays and enrollment challenges, recruitment was terminated with 113 patients enrolled of 240 planned. The proportion of patients having PASI-100 at week 16 for brodalumab was 53.4% compared with 35.9% for guselkumab [odds ratio (OR) 2.05; 95% confidence interval (CI) 0.95, 4.44; p = 0.069]. As this was not statistically significant, the hierarchical testing procedure was stopped. All other secondary PASI endpoints had nominal p-values below 0.05 in favor of brodalumab. In the time to PASI response analyses, brodalumab separated from guselkumab in estimated cumulative incidence of patients achieving a response from week 2 onward, suggesting fast onset of action with brodalumab. Quality of life measures improved in both treatment groups. The safety findings were consistent with the known safety profiles. Conclusions Brodalumab showed a tendency toward better and earlier effect than guselkumab in patients who had failed ustekinumab. Thus, this trial provides important information in assisting physicians in their choice of therapy for patients who have failed their prior anti-interleukin (IL)-12/23 treatment. Trial Registration ClinicalTrials.gov identifier NCT04533737

    Triterpenoids Amplify Anti-Tumoral Effects of Mistletoe Extracts on Murine B16.F10 Melanoma <i>In Vivo</i>

    Get PDF
    <div><p>Purpose</p><p>Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for <i>in vivo</i> cancer experiments.</p><p>Experimental design</p><p>B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed.</p><p>Results</p><p>Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts.</p><p>Conclusion</p><p>We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma.</p></div
    corecore