25 research outputs found

    Deletionen der mitochondrialen DNA im Alterungsprozess

    Get PDF

    Pseudo-subarachnoid haemorrhage due to chronic hypoxaemia: case report and review of the literature

    Get PDF
    Background: The specificity of computed tomography (CT) for subarachnoid haemorrhage (SAH) is very high. However, physicians should be aware of rare false positive findings, also referred to as "pseudo-SAH". We present an unusual case in which such a finding was caused by chronic hypoxaemia. Case presentation: A 37-year-old male patient presented with headaches. His CT-scan showed multiple confluent subarachnoid hyperattenuations, which mimicked SAH. However, the headache was chronic and had no features typical for SAH. The patient suffered from severe chronic hypoxaemia due to congenital heart failure. On CT-angiography diffuse intracranial vessel proliferation was found and laboratory results revealed a highly raised level of haematocrit, which had both probably developed as compensatory mechanisms. A combination of these findings explained the subarachnoid hyperdensities. Magnetic resonance imaging (MRI) showed no signs of SAH and visualized hypoxaemia in cerebral veins. A diagnosis of pseudo-SAH was made. The patient's symptoms were likely due to a secondary headache attributed to hypoxia and/or hypercapnia. Therapy was symptomatic. Conclusions: Severe chronic hypoxaemia should be recognised as a rare cause of pseudo-SAH. Clinical evaluation and MRI help differentiate SAH from pseudo-SAH

    Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis

    Get PDF
    Nickel(Ni)/aluminium(Al) hybrid foams are Al base foams coated with Ni by electrodeposition. Hybrid foams offer an enhanced energy absorption capacity. To ensure a good adhering Ni coating, necessary for a shear resistant interface, the influence of a chemical pre-treatment of the base foam was investigated by a combination of an interface morphology analysis by focused ion beam (FIB) tomography and in situ mechanical testing. The critical energy for interfacial decohesion from these microbending fracture tests in the scanning electron microscope (SEM) were contrasted to and the results validated by depth-resolved measurements of the evolving stresses in the Ni coating during three-point bending tests at the energy-dispersive diffraction (EDDI) beamline at the synchrotron BESSY II. Such a multi-method assessment of the interface decohesion resistance with respect to the interface morphology provides a reliable investigation strategy for further improvement of the interface morphology

    Catch-up-ESUS - follow-up in embolic stroke of undetermined source (ESUS) in a prospective, open-label, observational study: study protocol and initial baseline data

    Get PDF
    Introduction. So far there is no uniform, commonly accepted diagnostic and therapeutic algorithm for patients with embolic stroke of undetermined source (ESUS). Recent clinical trials on secondary stroke prevention in ESUS did not support the use of oral anticoagulation. As ESUS comprises heterogeneous subgroups including a wide age-range, concomitant patent foramen ovale (PFO), and variable probability for atrial fibrillation (AF), an individualised approach is urgently needed. This prospective registry study aims to provide initial data towards an individual, structured diagnostic and therapeutic approach in ESUS patients. Methods and analysis. The open-label, investigator-initiated, prospective, single-centre, observational registry study (Catch-up-ESUS) started in 01/2018. Consecutive ESUS patients ā‰„18 years who give informed consent are included and will be followed up for 3ā€‰years. Stratified by age <60ā€‰or ā‰„60 years, the patients are processed following a standardised diagnostic and treatment algorithm with an interdisciplinary design involving neurologists and cardiologists. Depending on the strata, patients receive a transesophageal echocardiogram; all patients receive an implantable cardiac monitor. Patients <60 years with PFO and without evidence of concomitant AF are planned for PFO closure within 6 months after stroke. The current diagnostic and therapeutic workup of ESUS patients requires improvement by both standardisation and a more individualised approach. Catch-up-ESUS will provide important data with respect to AF detection and PFO closure and will estimate stratified stroke recurrence rates after ESUS. Ethics and dissemination. The study has been approved by the responsible ethics committee at the Ludwig Maximilian University, Munich, Germany (project number 17ā€“685). Catch-Up-ESUS is conducted in accordance with the Declaration of Helsinki. All patients will have to give written informed consent or, if unable to give consent themselves, their legal guardian will have to provide written informed consent for their participation. The first observation period of the registry study is 1ā€‰year, followed by the first publication of the results including follow-up of the patients. Further publications will be considered according the predefined individual follow-up dates of the stroke patients up to 36 months

    Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deletions of the mitochondrial DNA (mtDNA) accumulate to high levels in dopaminergic neurons of the substantia nigra pars compacta (SNc) in normal aging and in patients with Parkinson's disease (PD). Human nigral neurons characteristically contain the pigment neuromelanin (NM), which is believed to alter the cellular redox-status. The impact of neuronal pigmentation, neurotransmitter status and brainstem location on the susceptibility to mtDNA damage remains unclear. We quantified mtDNA deletions (Ī”mtDNA) in single pigmented and non-pigmented catecholaminergic, as well as non-catecholaminergic neurons of the human SNc, the ventral tegmental area (VTA) and the locus coeruleus (LC), using laser capture microdissection and single-cell real-time PCR.</p> <p>Results</p> <p>In healthy aged individuals, Ī”mtDNA levels were highest in pigmented catecholaminergic neurons (25.2 Ā± 14.9%), followed by non-pigmented catecholamergic (18.0 Ā± 11.2%) and non-catecholaminergic neurons (12.3 Ā± 12.3%; p < 0.001). Within the catecholaminergic population, Ī”mtDNA levels were highest in dopaminergic neurons of the SNc (33.9 Ā± 21.6%) followed by dopaminergic neurons of the VTA (21.9 Ā± 12.3%) and noradrenergic neurons of the LC (11.1 Ā± 11.4%; p < 0.001). In PD patients, there was a trend to an elevated mutation load in surviving non-pigmented nigral neurons (27.13 Ā± 16.73) compared to age-matched controls (19.15 Ā± 11.06; p = 0.052), but levels where similar in pigmented nigral neurons of PD patients (41.62 Ā± 19.61) and controls (41.80 Ā± 22.62).</p> <p>Conclusions</p> <p>Catecholaminergic brainstem neurons are differentially susceptible to mtDNA damage. Pigmented dopaminergic neurons of the SNc show the highest Ī”mtDNA levels, possibly explaining the exceptional vulnerability of the nigro-striatal system in PD and aging. Although loss of pigmented noradrenergic LC neurons also is an early feature of PD pathology, mtDNA levels are not elevated in this nucleus in healthy controls. Thus, Ī”mtDNA are neither an inevitable consequence of catecholamine metabolism nor a universal explanation for the regional vulnerability seen in PD.</p

    TOM40 Mediates Mitochondrial Dysfunction Induced by Ī±-Synuclein Accumulation in Parkinson's Disease.

    Get PDF
    Alpha-synuclein (Ī±-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype Ī±-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in Ī±-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in Ī±-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in Ī±-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in Ī±-Synucleinopathies

    Neuropsychiatrische Post-COVID-Symptome: Folgen von COVID-19

    No full text
    corecore