849 research outputs found

    The pion and proton mass in finite volume

    Full text link
    We calculate the finite volume effects for the pion and nucleon mass. For the pion mass we present the results of a full two-loop calculation in chiral perturbation theory. The outcome shows that the resummed version of the Luscher formula we presented in an earlier work does indeed give an excellent approximation to the two-loop result. In view of this result we apply the same resummed formula to the nucleon mass. In the nucleon sector the extension of the chiral expansion to higher quark masses appears to be more problematic and it is therefore more difficult to make reliable predictions for the size of the finite volume effects. We present some preliminary numerical estimates.Comment: 10 pages, 3 figures, Talk given at the Workshop on Computational Hadron Physics, Cyprus, September 14-17, 200

    Finite volume effects for the pion mass at two loops

    Full text link
    We evaluate the pion mass in finite volume to two loops within Chiral Perturbation Theory. The results are compared with a recently proposed extension of the asymptotic formula of Luscher. We find that contributions, which were neglected in the latter, are numerically very small at the two-loop level and conclude that for Mpi*L>2, L>2fm the finite volume effects in the meson sector are analytically well under control.Comment: 26 pages, 6 figure

    An asymptotic formula for the pion decay constant in a large volume

    Full text link
    We derive an asymptotic formula a la Luscher for the finite volume correction to the pion decay constant: this is expressed as an integral over the < 3 \pi | A_\mu|0 > amplitude after proper subtraction of the pion pole contribution. We analyze the formula numerically at leading and next-to-leading order in the chiral expansion.Comment: 10 pages, 2 figures, v2: two references and a comment on the corresponding lattice results adde

    Protocol of the IntenSify-Trial:An open-label phase I trial of the CYP3A inhibitor cobicistat and the cytostatics gemcitabine and nab-paclitaxel in patients with advanced stage or metastatic pancreatic ductal adenocarcinoma to evaluate the combination's pharmacokinetics, safety, and efficacy

    Get PDF
    Expression of CYP3A5 protein is a basal and acquired resistance mechanism of pancreatic ductal adenocarcinoma cells conferring protection against the CYP3A and CYP2C8 substrate paclitaxel through metabolic degradation. Inhibition of CYP3A isozymes restores the cells sensitivity to paclitaxel. The combination of gemcitabine and nab-paclitaxel is an established regimen for the treatment of metastasized or locally advanced inoperable pancreatic cancer. Cobicistat is a CYP3A inhibitor developed for the pharmacoenhancement of protease inhibitors. The addition of cobicistat to gemcitabine and nab-paclitaxel may increase the antitumor effect. We will conduct a phase I dose escalation trial with a classical 3 + 3 design to investigate the safety, tolerability, and pharmacokinetics (PKs) of gemcitabine, nab-paclitaxel, and cobicistat. Although the doses of gemcitabine (1000 mg/m2) and cobicistat (150 mg) are fixed, three dose levels of nab-paclitaxel (75, 100, and 125 mg/m2) will be explored to account for a potential PK drug interaction. After the dose escalation phase, we will set the recommended dose for expansion (RDE) and treat up to nine patients in an expansion part of the trial. The trial is registered under the following identifiers EudraCT-Nr. 2019-001439-29, drks.de: DRKS00029409, and ct.gov: NCT05494866. Overcoming resistance to paclitaxel by CYP3A5 inhibition may lead to an increased efficacy of the gemcitabine and nab-paclitaxel regimen. Safety, efficacy, PK, and RDE data need to be acquired before investigating this combination in a large-scale clinical study.</p

    Electromagnetic corrections in eta --> 3 pi decays

    Full text link
    We re-evaluate the electromagnetic corrections to eta --> 3 pi decays at next-to-leading order in the chiral expansion, arguing that effects of order e^2(m_u-m_d) disregarded so far are not negligible compared to other contributions of order e^2 times a light quark mass. Despite the appearance of the Coulomb pole in eta --> pi+ pi- pi0 and cusps in eta --> 3 pi0, the overall corrections remain small.Comment: 21 pages, 11 figures; references updated, version published in EPJ

    Differences across health care systems in outcome and cost-utility of surgical and conservative treatment of chronic low back pain: a study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little evidence on differences across health care systems in choice and outcome of the treatment of chronic low back pain (CLBP) with spinal surgery and conservative treatment as the main options. At least six randomised controlled trials comparing these two options have been performed; they show conflicting results without clear-cut evidence for superior effectiveness of any of the evaluated interventions and could not address whether treatment effect varied across patient subgroups. Cost-utility analyses display inconsistent results when comparing surgical and conservative treatment of CLBP. Due to its higher feasibility, we chose to conduct a prospective observational cohort study.</p> <p>Methods</p> <p>This study aims to examine if</p> <p>1. Differences across health care systems result in different treatment outcomes of surgical and conservative treatment of CLBP</p> <p>2. Patient characteristics (work-related, psychological factors, etc.) and co-interventions (physiotherapy, cognitive behavioural therapy, return-to-work programs, etc.) modify the outcome of treatment for CLBP</p> <p>3. Cost-utility in terms of quality-adjusted life years differs between surgical and conservative treatment of CLBP.</p> <p>This study will recruit 1000 patients from orthopaedic spine units, rehabilitation centres, and pain clinics in Switzerland and New Zealand. Effectiveness will be measured by the Oswestry Disability Index (ODI) at baseline and after six months. The change in ODI will be the primary endpoint of this study.</p> <p>Multiple linear regression models will be used, with the change in ODI from baseline to six months as the dependent variable and the type of health care system, type of treatment, patient characteristics, and co-interventions as independent variables. Interactions will be incorporated between type of treatment and different co-interventions and patient characteristics. Cost-utility will be measured with an index based on EQol-5D in combination with cost data.</p> <p>Conclusion</p> <p>This study will provide evidence if differences across health care systems in the outcome of treatment of CLBP exist. It will classify patients with CLBP into different clinical subgroups and help to identify specific target groups who might benefit from specific surgical or conservative interventions. Furthermore, cost-utility differences will be identified for different groups of patients with CLBP. Main results of this study should be replicated in future studies on CLBP.</p

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
    corecore