83 research outputs found

    Analogues of Non-Gibbsianness in Joint Measures of Disordered Mean Field Models

    Get PDF
    It is known that the joint measures on the product of spin-space and disorder space are very often non-Gibbsian measures, for lattice systems with quenched disorder, at low temperature. Are there reflections of this non-Gibbsianness in the corresponding mean-field models? We study the continuity properties of the conditional probabilities in finite volume of the following mean field models: (a) joint measures of random field Ising, (b) joint measures of dilute Ising, (c) decimation of ferromagnetic Ising. The conditional probabilities are functions of the empirical mean of the conditionings; so we look at the large volume behavior of these functions to discover non-trivial limiting objects. For (a) we find (1) discontinuous dependence for almost any realization and (2) dependence of the conditional probabilities on the phase. In contrast to that we see continuous behavior for (b) and (c), for almost any realization. This is in complete analogy to the behavior of the corresponding lattice models in high dimensions. It shows that non-Gibbsian behavior which seems a genuine lattice phenomenon can be partially understood already on the level of mean-field models.

    Uniqueness of gradient Gibbs measures with disorder

    Full text link
    We consider - in uniformly strictly convex potential regime - two versions of random gradient models with disorder. In model (A) the interface feels a bulk term of random fields while in model (B) the disorder enters though the potential acting on the gradients. We assume a general distribution on the disorder with uniformly-bounded finite second moments. It is well known that for gradient models without disorder there are no Gibbs measures in infinite-volume in dimension d=2d = 2, while there are shift-invariant gradient Gibbs measures describing an infinite-volume distribution for the gradients of the field, as was shown by Funaki and Spohn. Van Enter and Kuelske proved in 2008 that adding a disorder term as in model (A) prohibits the existence of such gradient Gibbs measures for general interaction potentials in d=2d = 2. In Cotar and Kuelske (2012) we proved the existence of shift-covariant random gradient Gibbs measures for model (A) when dā‰„3d\geq 3, the disorder is i.i.d and has mean zero, and for model (B) when dā‰„1d\geq 1 and the disorder has stationary distribution. In the present paper, we prove existence and uniqueness of shift-covariant random gradient Gibbs measures with a given expected tilt uāˆˆRdu\in R^d and with the corresponding annealed measure being ergodic: for model (A) when dā‰„3d\geq 3 and the disordered random fields are i.i.d. and symmetrically-distributed, and for model (B) when dā‰„1d\geq 1 and for any stationary disorder dependence structure. We also compute for both models for any gradient Gibbs measure constructed as in Cotar and Kuelske (2012), when the disorder is i.i.d. and its distribution satisfies a Poincar\'e inequality assumption, the optimal decay of covariances with respect to the averaged-over-the-disorder gradient Gibbs measure.Comment: 39 pages. arXiv admin note: text overlap with arXiv:1012.437

    Gibbsian representation for point processes via hyperedge potentials

    Get PDF
    We consider marked point processes on the d-dimensional euclidean space, defined in terms of a quasilocal specification based on marked Poisson point processes. We investigate the possibility of constructing absolutely-summable Hamiltonians in terms of hyperedge potentials in the sense of Georgii et al. These potentials are a natural generalization of physical multi-body potentials which are useful in models of stochastic geometry. We prove that such representations can be achieved, under appropriate locality conditions of the specification. As an illustration we also provide such potential representations for the Widom-Rowlinson model under independent spin-flip time-evolution. Our paper draws a link between the abstract theory of point processes in infinite volume, the study of measures under transformations, and statistical mechanics of systems of point particles.Comment: 21 pages, 2 figure, 1 tabl

    The continuous spin random field model: Ferromagnetic ordering in d greater-than 3

    Get PDF
    We investigate the Gibbs-measures of ferromagnetically coupled continuous spins in double-well potentials subjected to a random field (our specific example being the Ī¦4 theory), showing ferromagnetic ordering in d ā‰„ 3 dimensions for weak disorder and large energy barriers. We map the random continuous spin distributions to distributions for an Ising-spin system by means of a single-site coarse-graining method described by local transition kernels. We derive a contour-representation for them with notably positive contour activities and prove their Gibbsianness. This representation is shown to allow for application of the discrete-spin renormalization group developed by Bricmont/Kupiainen implying the result in d ā‰„ 3

    Spin-Flip Dynamics of the Curie-Weiss Model: Loss of Gibbsianness with Possibly Broken Symmetry

    Get PDF
    We study the conditional probabilities of the Curie-Weiss Ising model in vanishing external field under a symmetric independent stochastic spin-flip dynamics and discuss their set of points of discontinuity (bad points). We exhibit a complete analysis of the transition between Gibbsian and non-Gibbsian behavior as a function of time, extending the results for the corresponding lattice model, where only partial answers can be obtained. For initial temperature Ī²^āˆ’1 ā‰„ 1, we prove that the time-evolved measure is always Gibbsian. For ā…” ā‰¤ Ī²^āˆ’1 < 1, the time-evolved measure loses its Gibbsian character at a sharp transition time. For Ī²^āˆ’1 < ā…”, we observe the new phenomenon of symmetry-breaking in the set of points of discontinuity: Bad points corresponding to non-zero spin-average appear at a sharp transition time and give rise to biased non-Gibbsianness of the time-evolved measure. These bad points become neutral at a later transition time, while the measure stays non-Gibbs. In our proof we give a detailed description of the phase-diagram of a Curie-Weiss random field Ising model with possibly non-symmetric random field distribution based on bifurcation analysis.

    Instability of a Hierarchical Wedding Cake in a Random Medium:A Mean Field Result

    Get PDF
    We consider a hierarchical interface model imbedded in a disordered medium in interface dimensions d = 2. We rigorously investigate the renormalization group flow for the stochastic variables describing the disorder in the mean field limit of infinite blocklength at zero temperature. The renormalization of these processes can be described on the level of an infinite vector of covariances. It is shown that, although the strength of the disorder renormalizes to zero, the interface exhibits unbounded fluctuations when the system size goes to infinity

    Gibbs properties of the fuzzy potts model on trees and in mean fields

    Get PDF
    We study Gibbs properties of the fuzzy Potts model in the mean field case (i.e on a complete graph) and on trees. For the mean field case, a complete characterization of the set of temperatures for which non-Gibbsianness happens is given. The results for trees are somewhat less explicit, but we do show for general trees that non-Gibbsianness of the fuzzy Potts model happens exactly for those temperatures where the underlying Potts model has multiple Gibbs measures

    Extremal decomposition for random Gibbs measures: From general metastates to metastates on extremal random Gibbs measures

    Get PDF
    The concept of metastate measures on the states of a random spin system was introduced to be able to treat the large-volume asymptotics for complex quenched random systems, like spin glasses, which may exhibit chaotic volume dependence in the strong-coupling regime. We consider the general issue of the extremal decomposition for Gibbsian specifications which depend measurably on a parameter that may describe a whole random environment in the infinite volume. Given a random Gibbs measure, as a measurable map from the environment space, we prove measurability of its decomposition measure on pure states at fixed environment, with respect to the environment. As a general corollary we obtain that, for any metastate, there is an associated decomposition metastate, which is supported on the extremes for almost all environments, and which has the same barycenter.Comment: 12 page

    Nonexistence of random gradient Gibbs measures in continuous interface models in d=2d=2

    Get PDF
    We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d=2d=2, while there are ``gradient Gibbs measures'' describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d=2d=2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d=3d=3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.Comment: Published in at http://dx.doi.org/10.1214/07-AAP446 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • ā€¦
    corecore