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INSTABILITY OF
A HIERARCHICAL WEDDING CAKE IN A RANDOM MEDIUM:
A MEAN FIELD RESULT*

CHRISTOF KULSKE
Institut de Recherche Mathématique de Rennes, Université de Rennes 1, Campus de Beaulieu
85042 Rennes Cedez, France

ABSTRACT

We consider a hierarchical interface model imbedded in a disordered medium in
interface dimensions d = 2. We rigorously investigate the renormalization group
flow for the stochastic variables describing the disorder in the mean field limit of
infinite blocklength at zero temperature. The renormalization of these processes
can be described on the level of an infinite vector of covariances. It is shown that,
although the strength of the disorder renormalizes to zero, the interface exhibits
unbounded fluctuations when the system size goes to infinity.

1. Introduction

In the past years there has been considerable progress in the understanding
of disordered spin systems. An essential step in this direction was made by the
rigorous renormalization group (RG) analysis of Bricmont and Kupiainen [3,4] of
the three dimension random field Ising model (RFIM). The authors were able to
show that, for small disorder and at sufficiently low temperatures, there exists
a ferromagnetically ordered phase. An alternative approach to this problem was
given by Zahradnik [16].

To problems of interfaces in a random environment which we are interested in
here the RG-technique could also be applied. In the framework of the solid on solid
model, it could be shown that there exist Gibbs measures describing flat interfaces,
for small disorder and at sufficiently low temperatures, in interface dimensions d >
2. The type of randomness that could be treated include a random bond and a
random field environment ([7], for the latter see [14]). For this analysis the previous
investigation of hierarchical models [5,6,8] has been very instructive.

However, the renormalization group analysis was used here to show the ir-
relevance of the randomness, i.e. in a situation where the randomness does not
essentially modify the behaviour of the system. In contrast to that for the RFIM
Aizenman and Wehr [1] have shown (by Martingale techniques) the uniqueness of
the Gibbs measure, for arbitrarily small randomness, at all temperatures in space
dimensions D = 2. Briefly, [1] and [3] thus confirmed precisely the prediction of
the simple (but in the case D = 3 discussed) Imry-Ma argument. In an analogous
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way, for the interface model in d = 2 the Imry-Ma argument predicts an interface
undergoing unbounded fluctuations when the volume of the system is allowed to go
to infinity. But, still there exists no rigorous analysis on this.

The present note is an attempt to tackle this issue from the point of view of
the renormalization group in a simplified situation. It continues the investigation
of the hierarchical interface model, (as analyzed before in [5,6,8]) to treat the case
of the marginal dimension d = 2. In this hierarchical model only contours (i.e. lines
separating regions of different heights) are allowed whose bases are nested squares.
For our present analysis we even simplify this model, further restricting the class
of allowed interfaces by imposing the height of the interface to increase by one
when crossing a contour from the outside. Our surfaces become thus ‘hierarchical
wedding cakes’ [9], imbedded in a random medium. The hierarchical model allows to
obtain explicitely RG equations for the stochastic processes describing the disorder.
However, the resulting equations seem to be difficult to analyze still; therefor we
restrict ourselves to treat the mean field limit of infinite blocklength. In this way we
have finally arrived at the simplest possible approximation of the interface model
from the point of view of the RG. Here, the reason for the simplicity of infinite
blocksize limit lies in the fact that it allows us to describe the renormalization of
distributions of stochastic processes on the level of an infinite vector of covariances.
This resulting recursion relation we get then will be seen to be reminiscent of a
discrete nonlinear diffusion equation in the space of covariances.

In the above framework we show be elementary arguments as the result of
this paper that, although the strength of the randomness renormalizes to zero, the
interface undergoes unbounded fluctuations when the system size goes to infinity
(see the theorem in chapter 4).

The organisation of the paper is as follows. The formal definition of the
model is given in chapter 2. In chapter 3 we derive the recursion relation. In
chapter 4 we prove our results on the recursion relation.

2. The model

Our surface will be lying over the finite box {0,...,L¥ —1}? = A yCZ? Tt
will be build of towers of height zero or one whose bases are plaquettes in IL"Z?,
n€{0,...,N}. N+1is the total number of hierarchies and L is the blocklength. We
will label a plaquette in L"Z? by the L-adic expansion of its lower left edgepoint y.
More precisely, we will write (0,...,0,yn,...,yn_1) With y; € S={0,..., L—1}? to denote
the plaquette whose lower left edgepoint is y = Y. ' 4 I*. To each such label is then
associated a partial height variable hEg,)...,o,mn,...,mu_l) € {0,1}. It is the latter condition
that makes the model a ‘wedding cake’, which is the only difference to [5,6,8], where
the partial height variables were allowed to take values in Z. Thus, the state space
of the model is Q1 n = {(hEg,)...,O,a:n,...,mN_l))n:O,...N;mn,...,mN_lES |hEg,)...,0,mn,...,mN_1) € {0,1}}
and we will write A, b/,... to denote its elements. We have employed here a notation
slightly different from [5,6,8] which will be convenient for the mean field limit.

Next we must specify the disorder entering into the model. We treat here dis-

order of random bond type (see [8]). We assume thus that we are given centered i.i.d.



Gaussian random variables J,, o, ,...)(h), for different h € Z and z, € {0,1,2,...,}* = S,
n€40,1,2,...}, with variance IF {Jz

(zo,21,...)

we want to take the mean field limit L 1 oo later.
As in [5,6,8], the energy of a surface described by h is defined by

(h)} = o%. 1z, runs in the infinite set S, since

N
EL,N,J(E) = z z hEg,)...,O,mn,...,mN_l)Ln + Z J(mDa-"!mN—l)(H(mua-"!mN—l)) (1)

n=0z,,...tN—1ES Tg,.EN—1ES

Here Hiz,,...om1) = Someo hEg’)__”O,mm___,mN_l) is the total height over a base point (zo,...,zx_1).

For given realisation of the J's, we will write A*(L, N,J) to denote the (a.s.
unique) ground state height configuration. Thus

Er,n,g(h" (L, N, J)) = heiggLfNEL,N,J(ﬁ) (2)

The mean field model for the ground state with N 41 hierarchies is now obtained by
taking the limit L t co. Its state space is thus Q. v = {(hEg,)...,O,mn,...,mu_l))nzo,...N;mn,...,mN_les,x, |
hEg,)...,O,a:n,...,mN_l) € {0’ 1}}

The ground state is then the random field (hgg(:-’:)o,mm---,mn—1))n:O,l,...,N;a:.,L,...,a:N_lESm
whose finite dimensional marginals are obtained from the finite-L marginals by the
weak limit I 1 co. The latter means of course that, for finite all finite collections of
indices n4,...,ng, and d;,...,8; € {0,1}

P | pleoms) S, Vi=1,....k

(0,00, m 58 N—1)

= lim IP [p5(™) (L,N,J) = &, ¥i = 1/4
Ntoo

(0,440, n - N—1)

3. The renormalization group transformation

The renormalization group equations can of course be obtained from [5,6]
by restricting the partial heights to the values zero and one. For the convenience
of the reader we include here its derivation. For the ground state analysis, the RG
transformation is nothing but the search for the energy minimum hierarchy after
hierarchy. This means more precisely, that we introduce recursively renormalized
energy functions by

E©) = Ep n,g

n k
E( +1) ((hEO,)---,O,mk,---,mn_1))k:n-}-l,...,N;m;’ES)

=L (h(n) inf ) E(M®) ((hglg,)...,o,m,,,...,m,q_l))kzn,___,N;miES)
nimn) )

Due to the hierarchical nature of the model, these renormalized energy functions
E®) then have the same form of dependence on the height variables as the initial



one, if one introduces new (‘renormalized’) random variables. With the recursive
definition

JL)

(3301 HEN— 1)(H) = J(mu,---,$N—1)(H)

JEoHsn) _ 1 - (niL)

(a:n+1, WEN— 1)(H) =7 ZE: <h1:%f,l1 (h+J(mn,mn+1,...,a:N_1)(H+h)) (5)
(n;L)

—_IE I:hl%fl h + J(a:n,---,mu_1)(H + h))])
we have
n (k)
E( )(( (0,0, 5000, N - 1));; =n,...,N;z; ES)

a Z Z hgoa)---,O,mk,---,ﬂZN—1)Lk_n + Z ((mvf) JEN— 1)( ((a:.,)t, WEN_ ) + Const

k=nzg,...cN-1€S T, TN-1ES

where H((:’)L sown) = =Y. hgg,)___,(),mk,___,w_l). ‘Const’ comes from the subtraction of the
expectation in (5) and does not depend on the height variables. It is therefor of
no importance for us. Note that we have made explicite the L-dependence in our
notation.

To recall the renormalization group algorithm for the determination of the
groundstate of Ep y s, let us now briefly write A(¥) for the collection of all height
variables of hierarchy k. Similarly we write h(**) for the variables taken from the
groundstate configuration. Now, the renormalization group strategy consists of the
following steps: First ‘compute’ the infimum A" of the function AN s EW) (V).
Next, given the knowledge of h(¥*), compute the minimal configuration A(V-1*) of
the function A(V-1) s E(¥-1) (h(()N’*), h(N‘l)). In this way proceed from coarser to finer

hierarchies, until, in the last step, n(%*) is computed.

This procedure is very similar in spirit to renormalization group algorithms
used in image processing, see [12]. Here the word ‘compute’ indicates, that we have
to be able in some sense to control the above recursion relations for the stochastic
variables in some sense. So, let us focus on (5) now.

Due to the fact that we are in interface dimensions d = 2, the normalisation
1/L in (5) is just the normalisation of the central limit theorem. Thus, if we replace
the ‘inf’ by its value for h = 0 the renormalized variables are just Gaussians of the
same variance as the initial ones, showing that d = 2 is the marginal dimension.
We must therefor, in contrast to earlier studies of this model, carefully investigate the
effects of the inf- expression. Despite the simplicity of the model, this seems to be
difficult for general L, having no detailed knowledge about the distribution of the .J-
processes. Observe however, that, how larger L becomes, the more approaches their
distribution a Gaussian and the latter is completely described by its covariance
structure. This has been our motivation for passing to the mean field limit L ¢
oo. The reader may also note at this point, that the recursion relation (5) maps
processes that are stationary w.r.t. the shift A — h+k to processes of the same type.



Thus, in the limit L 1 oo, the recursion relations can be described on the level of
a renormalization of an infinite vector of covariances. More precisely we have the
following

PROPOSITION:

(i) With L 1 oo the random processes {J(”;L)

a:,,,...,mN_l)(h)}hE{O,l,z,---} converge in distribution to

Gaussian processes {J(n) (h)}reto,1,2,...} which are stationary w.r.t. the shift h —

(ZnyeenZN—1)
h + k. Their vector of covariances,

oM = BT ((ho)ID) ((ho+h),  he{0,1,..} (7)

is computed from the recursion relations

(n+1) _ _(n) _ o ( () _ (n) 1
ay =ayg 2 (ao a;j ) F ; (agn) - a(ln)) , 1

(n) (n) (n)
a2n+1) _ agln) _9 (agn) _ a(ln)) F 1 ’ —ay 'y +2a; —ay )y b1
(n) _ () 2 (a(“) . a(“))
2 (ao —a ) 0 1
(8)

with initial condition a%o) = 020y,0. Here the function F is given by

F(a,q) = qP(a) — IE[(Q +a) lg<—a (@1 + ) Igi<—a] + (B [(Q + @) 1o<-a))®  (9)

for a twodimensional Gaussian random vector (Q, Q1) with E[Q] = E[Q1] = 0, E[Q?] =
E[Q? =1, E[QQ:1] = q. P(a) = IP[Q < —qa] is the error function.
(i) With L 1 oo the partial heights of the groundstate h*(L, N, J) converge to the independent

Bernoulli variables hggo_’f% Ty B 1) such that

L G S R (avi a(n)) (10
o — "

In particular, their distribution is independent of the total number of hierarchies N + 1.

Proof: From the multidimensional central limit theorem follows that the limiting
process is Gaussian and hence completely described by its covariances (see e.g. [15]).
It is easy to see that covariances between .J’s of different hierarchies vanish with
J((:,z,...,mN_l)(H‘*‘h))
between different values of H at the same site and the same hierarchie. Here we

can assume that (J((:l mN—l))he{o . i1s Gaussian. This computation is given in the

following lemma from which the ‘lifted’ recursion relations (8) and thus part (i) of
the proposition follow iteratively by successive rescaling of the occuring variables
by o(n) = %

L 1 oo. Hence it remains to compute the covariance of infy—o,1 (h +



LEMMA:Assume that (Ko, K1, K2, K3) is a Gaussian random vector of mean zero and covariances
lEKoz = lEKlz = lEKzz = lEKg = 1, lEKoKl = lEKng =r, lEKle =Tr, lEKoKz = lEKlKg =
ra, lEKng = r3.
Define the variables
A= inf{Ko,Kl + C}

(11)
B = inf{Kz, K3 + C}

Then
IE[AB] — IE[A] IE [B] = ry — w?F (iq) (12)

where
w= \/IE (K1 - Ko)?] = v2—2r (13)

and q s the ‘scalar product’

_ 1 _—T1+27‘2—T3
¢= S IE[(K1— Ko) (Ks — K2)] = 20— 1) (14)
Proof (of Lemma): We first write 4 and B in the form
A=Ko+ (K1 — Ko+ ¢)lg,—Kko<c—c (15)

B=K;+ (Ks—Kz+¢)lr,—k,<—c

It is useful to decompose the £2-random variables Ko, K> in the following way. We

introduce .

= — (Kl — Ko)
w (16)
Q1= — (K3 — K»)
w
Then we define random variables Kg-, K3+ by writing
Ko = (Ko,Q1)Q1 + Ky (1)

K2 =(K2,Q)Q + K3

Note that K3 is a Gaussian orthogonal to @; and K is orthogonal to Q (w.r.t. the
scalar product (X,Y) = IE(X,Y)). Introducing a = £ we may then write the variables
A and B in the form

A= Kd_ + <K07 Ql)Ql +w (Q + Oé) 1Q<—cx

18
BZK2J'+<K2,Q>Q+’U)(Q1+O() 1Q1<—oz ( )

Using the centeredness of @, Q1, Ko, Ki- we thus obtain for the expectation
IE[A] = IE[B] =wlE[(Q + a) 1g<-a] (19)

Now observe that from (Q;,Kg) = 0 follows that @, Ky are independent centered
Gaussians. Using the independence follows e.g. IE [Ky1g,<—a] = IE [Kg| IE[lg,<—a] =
0; in this way we obtain

IE[AB] = IE [KoK2] + ((Ko, Q1) + (K2, Q) wIE [Q (Q + @) 1g<-a]

(20)
+ W’ E[(Q+ @) lgc—a (Q1+a)19,<—al



Using ((Ko, Q1) + (K2, Q))w = r1 — 2rp + r3 = —quw? and E[Q (Q + @) lg<—a] = Pla) we
finally have

IE[AB] — [E[A]? = [E [KoK3] — w? (qP(a)
(21)
—E[(Q+a)lgc-a(Q1+a)lg,<—ol + (E[(Q+a) 1Q<—a])2)

which proves the lemma. Informally speaking, we thus see that the P(a)-term stems
from the event that the inf is taken for partial height one in precisely one of the
‘renormalized’ variables. In fact, it gives the main part of the function F. The first
term in the second line comes from the event that partial height one realizes both
infs and the last term comes from the centering. ¢

To prove part (ii) of the proposition just note that from the independence of
J®), jm) for n # m follows that

co,n n n !
1 [p(om) ):1}:1P[J())(0)<1+J() (1)}:13 (22)

(000110, Zm o1 (0,-.. O 9 (ag”) _ a(l”))

¢

We would like to conclude this chapter with the remark that the case 8 < 0o
is only nontrivial for I < co. In fact, if we start with a recursion relation for
finite temperature this leads to a temperature renormalization of the form g = Lg
(compare [5,6,8]). Thus for I 1 oo, the temperature becomes zero after the first step
of the renormalization and, with no loss of generality, we are led back to the present
analysis.

4. Analysis of renormalization group equations

Let us note first that all J™ y(h) are monotone functions of each of

(ZreemrZ N1
the initial 1.1.d. random variables J((i)“___’w_l)(h’) . Thus, from the FKG inequality
follows that the covariances a{®) are nonnegative for all n and h. Note also that
F(a,q=10)=0 and %F(a, q) > 0 (as is easily checked). Therefore, due to the presence
of the lattice laplacian in the g-argument, the renormalization group equation (8) is
reminiscent of a discrete nonlinear diffusion equation. A complete analysis of this
equation including the computation of the asymptotics of its solution is difficult; at
first sight it might not be clear that the solution exists for all n (1 o0).

However, using explicite properties of the function F and the fact that the ay’s
are covariances we can obtain by elementary arguments the qualitative information
of interest, as stated in

THEOREM (MEAN FIELD MODEL): Let the initial variance o = IE[J(,, .(h)?] be posi-
tive. Denote by H3° (N) the total height of the ground state at the base point 0 for the model with
N + 1 hierarchies. Then



(n)

1) The renormalized variances ay ' satisfy limy o0 al™ =0
0 too &g
(%) limytoo HP (N) =00 a.s.

Remarks: Physically speakint it is the response of ‘small’ contours to the randomness
leads to a screening of the randomness which causes the variance a{* of the effective
disorder variables J(®) to shrink to zero on large scales (i.e. when the index of the
hierarchy n goes to infinity). Though, this effect is not strong enough to lead to a
bounded interface in the infinite volume. The result is ‘global’ in the sense that we
do not need the initial variance % to be small. Note that the theorem only gives
a qualitative result. The determination of the asymptotics of the divergence of the
average height at a given point as a function of the system size would require a
much more elaborate analysis.

PROOF: Observe that the fixed points of the recursion relation (8) are precisely
those given by the homogenous configurations a, = a for all h. Clearly these are
fixed points; in fact, there are no others: From the first equation of (8) follows that
a fixed point (as)n=o,1,. must satisfy ag = a1, since F(a,1) > 0. Since the a;’s are
covariances for a stationary Gaussian process it follows from this that a, = ao.

Now, from the first equation of (8) and ao > a1 (the latter holds since the as’s
are covariances) we see that a{*) is a monotonically decreasing function of the ‘time’
k. Hence the limit limto af) > 0 exists (and could possibly be larger than zero). We
will now show that in fact it equals zero.

From the estimate |F(e,q)| < F(a) follows that the time variation at any fixed
‘site’ h 1s bounded by the time variation at the site h =0, i.e.

2 ‘ag’““) - agf>| < g%(k)F (\/21% 1) =a{M - lim all) (23)
with v®) = a{¥) — a{¥). Next we note that
Jim > [ofr ) - o) 0 2
This follows from
i ‘agﬁl) _ a%k)‘ _ i ‘agwl) _ a%k)‘ < agh—l) _ I}IT?O agk) (25)
k=0 k=h—1

The equality in (25) stems from the fact that F(a,q = 0) = 0 and hence a{*) = 0 for
h>k.
Now, for all »h > 1,

0 — aff, | < [af, — 20 + | + ol — ol < 2000 + [l — o] (26)

Here the second inequality stems from the fact that the a,’s are covariances. (It is
equivalent with |¢| < 1 for ¢ as defined in (14).) Observe that v(*)—0 (this follows



from the convergence of the sum Y ;> 208 F (1/\/2v(k), 1)) Hence we conclude from

(26) by induction that ‘ag“) - ag‘jr)l‘ —0 with k 1 oo for all h. Subsequently, for any
fixed h, we have

: (k) (k)| _
Jim [af? — o] = 0 (1)
Thus
. k . k k41 k
fimed? = il < 32|l -l (29

Taking the limit h 1 co and using (24) now proves part (i) of the theorem.
To prove the nonsummability of the expectation of the partial height func-
tions and thus part (ii) of the theorem recall that

B =Y P (o) (29)

k=0

Now, it is easy to verify the bound F(a,q = 1) < Const P(a) with some numerical
Const. Hence, using part (i) of the theorem, we may write

(" _ 3 ("‘)F< 1 1)<2(J - (’“)P< 1 )<2c O P( 1 )
G’O kz:; v 2v(k)’ < ons kz:;v 2v(k) < ons G’O kgz;l QU(k)
(30)
In the last inequality we have used the fact that a{™ is monotonically decreasing.

From (30) thus follows the uniform bound 3332 P (1/v2u(k),1) > s for all n
which proves (ii).¢
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