351 research outputs found

    Das aufstrebende Macht des digitalisierten Wortes: Die Darstellung von das Deutschlands 2014 FIFA Weltmeisterschaft Sieg über digitale und soziale Medien, und die anschließende Wirkung auf Nationalstolz in Deutschland

    Get PDF
    Soccer is a beloved and successful sport that serves as an important part of Germany’s culture, and, like in other European countries, there has always been a correlation between the success of a country’s soccer team and a perceived prominence of that nation. In the summer of 2014, the German National Team took the title of FIFA World Cup victors, in a tournament that was heavily publicized through all forms of media, both print and digital. Now more than ever before, newer forms of digital media are emerging as popular forums for the distribution of news, and of conversation thereafter. These newer forms have fewer regulations and denotations about their supposed and effective uses in spreading news to the public, and because they are used by a younger and more digitally affluent generation, are used in an entirely different way than are other media genres, such as print media, associated with older generations. In my thesis, I analyze a series of newspapers, magazines, commercials, and social media forum posts from the time of Germany’s 2014 FIFA World Cup victory, in order to discover how the rhetoric from these different genres of digital and social media show evidences of German national pride, and rhetorical appeals that would incite a similar feeling of patriotism in their audiences. I will discover the relationship between these forms of media and the country’s national pride, doing so through the lens of the relationship between international sports and nationalism

    Tunable diode laser in-situ CH₄ measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    Get PDF
    A laser spectrometer for automated monthly measurements of methane (CH 4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses. © Author(s) 2014

    The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe

    Get PDF
    Post-depositional fractionation of stable water isotopes due to fractionating surface evaporation introduces uncertainty to various isotope applications such as the reconstruction of paleotemperatures, paleoaltimetry, and the investigation of groundwater formation. In this study, we investigate isotope fractionation at snow-covered moisture sources by combining 17 months of observations of isotope concentration ratios [HD16O] ∕ [H216O] in low-level water vapor in central Europe with a new Lagrangian isotope model. The isotope model is capable of reproducing variations of the observed isotope ratios with a correlation coefficient R of 0.82. Observations from 38 days were associated with cold snaps and moisture uptake in snow-covered regions. Deviations between modeled and measured isotope ratios during the cold snaps were related to differences in skin temperatures (Tskin). Analysis of Tskin provided by the Global Data Assimilation System (GDAS) of the NCEP implies the existence of two regimes of Tskin with different types of isotope fractionation during evaporation: a cold regime with Tskin < Tsubl,max = −7.7 °C, which is dominated by non-fractionating sublimation of snow, and a warmer regime with Tsubl,max < Tskin < 0 °C, which is dominated by fractionating evaporation of meltwater. Based on a sensitivity study, we assess an uncertainty range of the determined Tsubl,max of −11.9 to −2.9 °C. The existence of the two fractionation regimes has important implications for the interpretation of isotope records from snow-covered regions as well as for a more realistic modeling of isotope fractionation at snow-covered moisture sources. For these reasons, more detailed experimental studies at snow-covered sites are needed to better constrain the Tsubl,max and to further investigate isotope fractionation in the two regimes

    Biosynthesis of keratan sulfate: Purification and properties of a galactosyltransferase from bovine cornea

    Full text link
    A soluble galactosyltransferase was purified 22,000-fold from bovine cornea. The enzyme catalyzes the transfer of galactose from UDP-galactose to N-acetyl--glucosamine, [alpha]- and [beta]-glucosaminides, bovine cornea and nasal septum agalactokeratan, and to glycoproteins containing terminal nonreducing N-acetylglucosaminyl units. When N-acetyl--glucosamine served as acceptor, the product formed by the cornea transferase contained galactose glycosidically linked to carbon atom 4 of N-acetyl--glucosamine; the same glycosidic linkage was found in [14C]keratan preparations isolated from reaction mixtures where keratan containing terminal nonreducing N-acetylglucosaminyl units served as acceptor. The cornea enzyme exhibited a markedly lower Km with keratan than with N-acetyl--glucosamine. The physical and kinetic properties of the cornea galactosyltransferase and of the milk A-protein (A-protein + [alpha]-lactalbumin = lactose synthase), including modulations of acceptor specificity by [alpha]-lactalbumin, were compared. The results of these studies strongly suggest that the two glycosyltransferases are similar, if not identical. Efforts to demonstrate the presence of other soluble galactosyltransferases in cornea were unsuccessful; no change in the ratios of products formed with several acceptors was observed at any stage of purification. It is suggested that in bovine tissues a single galactosyltransferase participates in the synthesis of both high and low molecular weight galactosides including the assembly of the repeating disaccharide [O-[beta]-galactopyranosyl-(1 --&gt; 4)-N-acetylglucosamine] of cornea keratan sulfate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23647/1/0000611.pd

    Airborne in situ vertical profiling of HDO/H₂¹⁶O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    Get PDF
    Vertical profiles of water vapor (H2O) and its isotope ratio D/H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of δ(δD) &approx;10&permil;. Vertical profiles between 150 and ∼7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed. © Author(s) 2015

    Airborne in situ vertical profiling of HDO/H₂¹6O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    Get PDF
    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as delta D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Delta(delta D) ~10&#8240;. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of delta D(H2O) as a means to validate the remote sensing humidity and delta D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and delta D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed
    corecore