124 research outputs found

    New Variants and Age Shift to High Fatality Groups Contribute to Severe Successive Waves in the 2009 Influenza Pandemic in Taiwan

    Get PDF
    Past influenza pandemics have been characterized by the signature feature of multiple waves. However, the reasons for multiple waves in a pandemic are not understood. Successive waves in the 2009 influenza pandemic, with a sharp increase in hospitalized and fatal cases, occurred in Taiwan during the winter of 2010. In this study, we sought to discover possible contributors to the multiple waves in this influenza pandemic. We conducted a large-scale analysis of 4703 isolates in an unbiased manner to monitor the emergence, dominance and replacement of various variants. Based on the data from influenza surveillance and epidemic curves of each variant clade, we defined virologically and temporally distinct waves of the 2009 pandemic in Taiwan from May 2009 to April 2011 as waves 1 and 2, an interwave period and wave 3. Except for wave 3, each wave was dominated by one distinct variant. In wave 3, three variants emerged and co-circulated, and formed distinct phylogenetic clades, based on the hemagglutinin (HA) genes and other segments. The severity of influenza was represented as the case fatality ratio (CFR) in the hospitalized cases. The CFRs in waves 1 and 2, the interwave period and wave 3 were 6.4%, 5.1%, 15.2% and 9.8%, respectively. The results highlight the association of virus evolution and variable influenza severity. Further analysis revealed that the major affected groups were shifted in the waves to older individuals, who had higher age-specific CFRs. The successive pandemic waves create challenges for the strategic preparedness of health authorities and make the pandemic uncertain and variable. Our findings indicate that the emergence of new variants and age shift to high fatality groups might contribute potentially to the occurrence of successive severe pandemic waves and offer insights into the adjustment of national responses to mitigate influenza pandemics

    The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells

    Get PDF
    The USFDA approved "epigenetic drug", Decitabine, exerts its effect by hypomethylating DNA, demonstrating the pivotal role aberrant genome-wide DNA methylation patterns play in cancer ontology. Using sensitive technologies in a cellular model of Acute Myeloid Leukemia, we demonstrate that while Decitabine reduces the global levels of 5-methylcytosine (5mC), it results in paradoxical increase of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) levels. Hitherto, the only biological mechanism known to generate 5hmC, 5fC and 5caC, involving oxidation of 5mC by members of Ten-Eleven-Translocation (TET) dioxygenase family, was not observed to undergo any alteration during DAC treatment. Using a multi-compartmental model of DNA methylation, we show that partial selectivity of TET enzymes for hemi-methylated CpG dinucleotides could lead to such alterations in 5hmC content. Furthermore, we investigated the binding of TET1-catalytic domain (CD)-GFP to DNA by Fluorescent Correlation Spectroscopy in live cells and detected the gradual increase of the DNA bound fraction of TET1-CD-GFP after treatment with Decitabine. Our study provides novel insights on the therapeutic activity of DAC in the backdrop of the newly discovered derivatives of 5mC and suggests that 5hmC has the potential to serve as a biomarker for monitoring the clinical success of patients receiving DAC

    Cytotoxic T Lymphocyte Trafficking and Survival in an Augmented Fibrin Matrix Carrier

    Get PDF
    Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment

    Epigenetic Regulation of HIV-1 Latency by Cytosine Methylation

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) persists in a latent state within resting CD4+ T cells of infected persons treated with highly active antiretroviral therapy (HAART). This reservoir must be eliminated for the clearance of infection. Using a cDNA library screen, we have identified methyl-CpG binding domain protein 2 (MBD2) as a regulator of HIV-1 latency. Two CpG islands flank the HIV-1 transcription start site and are methylated in latently infected Jurkat cells and primary CD4+ T cells. MBD2 and histone deacetylase 2 (HDAC2) are found at one of these CpG islands during latency. Inhibition of cytosine methylation with 5-aza-2′deoxycytidine (aza-CdR) abrogates recruitment of MBD2 and HDAC2. Furthermore, aza-CdR potently synergizes with the NF-κB activators prostratin or TNF-α to reactivate latent HIV-1. These observations confirm that cytosine methylation and MBD2 are epigenetic regulators of HIV-1 latency. Clearance of HIV-1 from infected persons may be enhanced by inclusion of DNA methylation inhibitors, such as aza-CdR, and NF-κB activators into current antiviral therapies

    FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer

    Get PDF
    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly associated with FOXA1 methylation and downregulation of FOXA1 expression, providing physiological evidence to our findings that FOXA1 expression is regulated by methylation and chromatin silencing and that BRCA1 maintains FOXA1 expression through suppressing FOXA1 gene methylation in breast cancer.Oncogene advance online publication, 22 December 2014; doi:10.1038/onc.2014.421.published_or_final_versio

    The effect of an autologous cellular gel-matrix integrated implant system on wound healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This manuscript reports the production and preclinical studies to examine the tolerance and efficacy of an autologous cellular gel-matrix integrated implant system (IIS) aimed to treat full-thickness skin lesions.</p> <p>Methods</p> <p>The best concentration of fibrinogen and thrombin was experimentally determined by employing 28 formula ratios of thrombin and fibrinogen and checking clot formation and apparent stability. IIS was formed by integrating skin cells by means of the <it>in situ </it>gelification of fibrin into a porous crosslinked scaffold composed of chitosan, gelatin and hyaluronic acid. The <it>in vitro </it>cell proliferation within the IIS was examined by the MTT assay and PCNA expression. An experimental rabbit model consisting of six circular lesions was utilized to test each of the components of the IIS. Then, the IIS was utilized in an animal model to cover a 35% body surface full thickness lesion.</p> <p>Results</p> <p>The preclinical assays in rabbits demonstrated that the IIS was well tolerated and also that IIS-treated rabbit with lesions of 35% of their body surface, exhibited a better survival rate (p = 0,06).</p> <p>Conclusion</p> <p>IIS should be further studied as a new wound dressing which shows promising properties, being the most remarkable its good biological tolerance and cell growth promotion properties.</p

    Complement C3 Deficiency Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension in Mice

    Get PDF
    Background: Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension. Methodology/Principal Findings: Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice. Conclusions: Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans. © 2011 Bauer et al

    Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine

    Get PDF
    In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites
    corecore