113 research outputs found

    Finding the Most Metal-poor Stars of the Galactic Halo with the Hamburg/ESO Objective-Prism Survey

    Full text link
    I review the status of the search for extremely metal-poor halo stars with the Hamburg/ESO objective-prism survey (HES). 2194 candidate metal-poor turn-off stars and 6133 giants in the magnitude range 14 < B < 17.5 have been selected from 329 (out of 380) HES fields, covering an effective area of 6400 square degrees in the southern extragalactic sky. Moderate-resolution follow-up observations for 3200 candidates have been obtained so far, and ~200 new stars with [Fe/H] <- 3.0 have been found, which trebles the total number of such extremely low-metallicity stars identified by all previous surveys. We use VLT-UT2/UVES, Keck/HIRES, Subaru/HDS, TNG/SARG, and Magellan/MIKE for high-resolution spectroscopy of HES metal-poor stars. I provide an overview of the scientific aims of these programs, and highlight several recent results.Comment: 16 pages, 6 figure

    The Hamburg/ESO R-process Enhanced Star survey (HERES) IX. Constraining pure r-process Ba/Eu abundance ratio from observations of r-II stars

    Full text link
    The oldest stars born before the onset of the main s-process are expected to reveal a pure r-process Ba/Eu abundance ratio. We revised barium and europium abundances of selected very metal-poor (VMP) and strongly r-process enhanced (r-II) stars to evaluate an empirical r-process Ba/Eu ratio. Our calculations were based on non-local thermodynamic equilibrium (NLTE) line formation for Ba II and Eu II in the classical 1D MARCS model atmospheres. Homogeneous stellar abundances were determined from the Ba II subordinate and resonance lines by applying a common Ba isotope mixture. We used high-quality VLT/UVES spectra and observational material from the literature. For most investigated stars, NLTE leads to a lower Ba, but a higher Eu abundance. The resulting elemental ratio of the NLTE abundances amounts, on average, log(Ba/Eu) = 0.78+-0.06. This is a new constraint to pure r-process production of Ba and Eu. The obtained Ba/Eu abundance ratio of the r-II stars supports the corresponding Solar System r-process ratio as predicted by recent Galactic chemical evolution calculations of Bisterzo, Travaglio, Gallino, Wiescher, and Kappeler. We present the NLTE abundance corrections for lines of Ba II and Eu II in the grid of VMP model atmospheres.Comment: 12 pages, 8 tables, accepted for publication in A&

    Stellar abundances and presolar grains trace the nucleosynthetic origin of molybdenum and ruthenium

    Full text link
    This work presents a large consistent study of molybdenum (Mo) and ruthenium (Ru) abundances in the Milky Way. These two elements are important nucleosynthetic diagnostics. In our sample of 71 Galactic metal-poor field stars, we detect Ru and/or Mo in 51 of these (59 including upper limits). The sample consists of high-resolution, high signal-to-noise spectra covering both dwarfs and giants from [Fe/H]=-0.63 down to -3.16. Thus we provide information on the behaviour of Mo I and Ru I at higher and lower metallicity than is currently known. We find a wide spread in the Mo and Ru abundances, which is typical of heavy elements. This indicates that several formation processes, in addition to high entropy winds, can be responsible for the formation of Mo and Ru. The formation processes are traced by comparing Mo and Ru to elements (Sr, Zr, Pd, Ag, Ba, and Eu) with known formation processes. We find contributions from different formation channels, namely p-, slow (s-), and rapid (r-) neutron-capture processes. Molybdenum is a highly convolved element that receives contributions from several processes, whereas Ru is mainly formed by the weak r-process as is silver. We also compare our absolute elemental stellar abundances to relative isotopic abundances of presolar grains extracted from meteorites. Their isotopic abundances can be directly linked to the formation process (e.g. r-only isotopes) providing a unique comparison between observationally derived abundances and the nuclear formation process. The comparison to abundances in presolar grains shows that the r-/s-process ratios from the presolar grains match the total elemental chemical composition derived from metal-poor halo stars with [Fe/H]~ -1.5 to -1.1 dex. This indicates that both grains and stars around and above [Fe/H]=-1.5 are equally (well) mixed and therefore do not support a heterogeneous presolar nebula... Abridged.Comment: 18 pages, 12 figures, accepted by A&

    HE 1327-2326, an unevolved star with [Fe/H]<-5.0. II. New 3D-1D corrected abundances from a VLT/UVES spectrum

    Get PDF
    We present a new abundance analysis of HE 1327-2326, the currently most iron-poor star, based on observational data obtained with VLT/UVES. We correct the 1D LTE abundances for 3D effects to provide an abundance pattern that supersedes previous works, and should be used to observationally test current models of the chemical yields of the first-generation SNe. Apart from confirming the 1D LTE abundances found in previous studies before accounting for 3D effects, we make use of a novel technique to apply the 3D-1D corrections for CNO which are a function of excitation potential and line strength for the molecular lines that comprise the observable CH, NH, and OH features. We find that the fit to the NH band at 3360 A is greatly improved due to the application of the 3D-1D corrections. This may indicate that 3D effects are actually observable in this star. We also report the first detection of several weak Ni lines. The cosmologically important element Li is still not detected; the new Li upper limit is extremely low, A(Li)<0.62, and in stark contrast with results not only from WMAP but also from other metal-poor stars. We also discuss how the new corrected abundance pattern of HE 1327-2326 is being reproduced by individual and integrated yields of SNe.Comment: 43 pages, incl. 17 figures, accepted for publication in Ap

    The Hamburg/ESO R-process Enhanced Star survey (HERES)VII. Thorium abundances in metal-poor stars

    Full text link
    We report thorium abundances for 77 metal-poor stars in the metallicity range of -3.5<[Fe/H]}<-1.0, based on "snapshot" spectra obtained with VLT-UT2/UVES during the HERES Survey. We were able to determine the thorium abundances with better than 1-sigma confidence for 17 stars, while for 60 stars we derived upper limits. For five stars common with previous studies, our results were in good agreement with the literature results. The thorium abundances span a wide range of about 4.0 dex, and scatter exists in the distribution of log(Th/Eu) ratios for lower metallicity stars, supporting previous studies suggesting the r-process is not universal. We derived ages from the log(Th/Eu) ratios for 12 stars, resulting in large scattered ages, and two stars with significant enhancement of Th relative to Eu are found, indicating the "actinide boost" does not seem to be a rare phenomenon and thus highlighting the risk in using log(Th/Eu) to derive stellar ages.Comment: 12 pages, 8 figure

    The Oxygen Abundance of HE 1327-2326

    Full text link
    From a newly obtained VLT/UVES spectrum we have determined the oxygen abundance of HE 1327-2326, the most iron-poor star known to date. UV-OH lines yield a 1D LTE abundance of [O/Fe]_OH = 3.7 (subgiant case) and [O/Fe]_OH = 3.4 (dwarf case). Using a correction of -1.0 dex to account for 3D effects on OH line formation, the abundances are lowered to [O/Fe] = 2.8 and [O/Fe] = 2.5, respectively, which we adopt. Without 3D corrections, the UV-OH based abundance would be in disagreement with the upper limits derived from the OI triplet lines: [O/Fe]_trip < 2.8 (subgiant) and [O/Fe]_trip < 3.0 (dwarf). We also correct the previously determined carbon and nitrogen abundances for 3D effects. Knowledge of the O abundance of HE 1327-2326 has implications for the interpretation of its abundance pattern. A large O abundance is in accordance with HE 1327-2326 being an early Population II star which formed from material chemically enriched by a first generation supernova. Our derived abundances, however, do not exclude other possibilities such as a Population III scenario.Comment: 13 pages, accepted for publication in ApJ
    • …
    corecore