37 research outputs found

    Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity

    Get PDF
    Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe)2SiO4) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.This work was funded by a Deutsche Forschungsgemeinsschaft grant awarded to A. Putnis (PU153/16-1) and a Humboldt fellowship funding a short stay for H.St.C.O. at the University of Mü nster, Germany. All analytical and experimental procedures were carried out at the Institut fü r Mineralogie, University of Mü nster, Germany. H.E.K. acknowledges funding through the European Marie Curie Actions International Outgoing Fellowship (TMuPiFe 2012-328731). O.P. acknowledges The Netherlands Organisation for Scientific Research (NWO) Veni Grant (No. 863.13.006). C.V.P. and A.P. acknowledge funding through the EU Marie Curie International Training Networks, CO2REACT, FlowTrans and MINS

    Mineral Surface Reactions at the Nanoscale

    Get PDF
    Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research

    Editorial for Special Issue “Mineral Surface Reactions at the Nanoscale”

    No full text
    Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and, hence, the structure of the crust of the Earth during such processes at metamorphism, metasomatism, and weathering. In recent years, focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical techniques, such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, advanced synchrotron-based applications, complemented by molecular simulations, to confirm or predict the results of experimental studies. In particular, the development of analytical methods that allow direct observations of mineral–fluid reactions at the nanoscale have revealed new and significant aspects of the kinetics and mechanisms of reactions taking place in fundamental mineral–fluid systems. These experimental and computational studies have enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions, as well as the kinetics of these processes, and, hence, to enhance our ability to predict potential mineral behavior. In this Special Issue “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research

    The effect of a copolymer inhibitor on baryte precipitation

    No full text
    In situ atomic force microscopy (AFM) experiments were used to study the effect of trace amounts of a commercial inhibitor on the (001) baryte surface during growth. The additive tested was a copolymer, used as a scale inhibitor in oil recovery (maleic acid/allyl sulfonic acid copolymer with phosphonate groups, partial sodium salt). The morphology of the growth was used to gain a better understanding of the inhibition mechanism. Without an inhibitor, barium sulfate growth occurred by 2D island nucleation and spreading. The addition of a small amount (0.1 ppm and 0.5 ppm) of copolymer inhibitor enhances 2D nucleation but blocks growth. Just 1 ppm of inhibitor blocks nucleation and growth by adsorption of a copolymer layer onto the baryte surface. Similarly in 3D studies, small amounts of inhibitor seem to act on growth and not on nucleation and larger amounts of copolymer act on both by adsorption of the copolymer to all baryte surfaces keeping the particles in their embryo stage

    Coupled fluctuations in element release during dolomite dissolution

    No full text
    Atomic force microscopy has been used to determine more precisely the mechanism of the initial stages of dolomite dissolution. Analysis of outflow solutions initially shows fluctuations of both Ca and Mg release with concentrations of Ca >> Mg. The dolomite surface dissolves congruently in the presence of slightly acidified water as confirmed by the regular spreading of characteristic rhombohedral etch pits. Direct in situ observations show that a new phase precipitates on the dissolving surface simultaneously. As the Ca and Mg release decreases with time, the precipitated phase can be seen to spread across the dolomite surface. These observations indicate that the apparent incongruent dissolution of dolomite is a two-step process involving stoichiometric dissolution with the release of Ca, Mg and CO3 ions to solution at the mineral–fluid interface coupled with precipitation of a new Mg-carbonate phase. The coupled element release confirms the interface-coupled dissolution-precipitation mechanism

    Coupled dissolution-precipitation and growth processes on calcite, aragonite and Carrara marble exposed to cadmium-rich aqueous solutions

    No full text
    Calcium carbonate and cadmium-rich fluid interactions have been studied at the nano and microscale with fluid flow and static fluid conditions for three forms of CaCO3: calcite in single crystals of Iceland Spar, calcite in a polycrystalline Carrara marble, and aragonite single crystals. Atomic Force Microscopy (AFM) showed the nanoscale effect of cadmium on CaCO3 dissolution and growth under flow-through conditions at ambient temperature, with the modification of calcite dissolution behaviour and simultaneous precipitation of a Cd-rich phase on all the different samples. Hydrothermal experiments at 200°C revealed that the reactivity of single calcite crystals is passivated by epitaxial growth of the less soluble Cd-rich endmember of the (Ca,Cd)CO3 solid-solution on the sample surface due to the similar crystallographic structures of calcite and otavite (CdCO3). Conversely, the presence of grain boundaries in Carrara marble or the change of crystallographic structure and reaction-induced fracturing in aragonite allowed, to some extent, the pseudomorphic replacement of Carrara marble and aragonite samples by a porous (Ca,Cd)CO3 solid-solution phase of variable composition. These phenomena have been observed in solutions undersaturated with respect to all solid phases and are the result of an interface-coupled dissolution-precipitation mechanism where the dissolving CaCO3 provides ions to supersaturate the mineral-fluid interfacial layer, leading to the precipitation of a Cd-containing phase on the samples’ surfaces. This coupled dissolution-precipitation mechanism could potentially be used as a remediation process to sequester cadmium from contaminated effluents

    Baryte cohesive layers formed on a (010) gypsum surface by a pseudomorphic replacement

    Get PDF
    The mineral replacement of gypsum (CaSO4·2H2O) by baryte (BaSO4) is relevant to technological and industrial applications, including its use as a plaster or stone consolidant in cultural heritage conservation. In the present study, we provide experimental evidence suggesting that, during the interaction of gypsum cleavage surfaces with barium-bearing solutions, a pseudomorphic replacement takes place and results in the formation of a crystallographically oriented baryte layer. This mineral replacement process is favoured by the porosity generated, due to the differences in molar volume and solubility between parent and product sulfate phases, allowing the progress of the reaction. The homogeneous micrometre-sized layer of baryte occurs most likely via a fluid-mediated interface-coupled dissolution–precipitation mechanism. A certain degree of crystallographic control on the polycrystalline BaSO4 product layer by the structure of the parent substrate (gypsum) is confirmed by electron microscopy observations and X-ray diffraction analyses. The structural control exerted by the cleavage gypsum surface on the baryte layer can be defined by the epitactic relationship: Gyp (010) || Bar (010). The formation of baryte increases with reaction time until passivation occurs at the replacement interface, probably due to a decreased porosity and loss of connectivity that thereby prevents further reaction. The investigation of these processes occurring on freshly cleaved single crystals of gypsum were complemented by studying the replacement of polycrystalline gypsum cubes, showing a homogeneous baryte surface layer on the sample. The results of this study thus offer interesting insights into the application of the replacement of gypsum by baryte as a conservation method for gypsum sculptures and plasterwork, increasing their resistance against water and humidity while preserving the surface features of the original mineral substrate

    Mechanistic Principles of Barite Formation: From Nanoparticles to Micron-Sized Crystals

    No full text
    This study reports on the early stages of barite (BaSO4) precipitation from aqueous solution. TEM observations indicate that BaSO4 is formed by two levels of oriented aggregation of nanosized solid particles (nonclassical crystallization pathways). Oriented alignment of nanoparticles within micron-sized aggregates is observed, resulting in the formation of perfect monocrystalline particles of barite formed after a recrystallization process that reduces the number of grain boundaries within the aggregates. When an organic copolymer is present in solution, a dense liquid precursor phase seems to be stabilized, forming a PILP (polymer induced liquid precursor). Additionally, secondary nanoparticles are temporarily stabilized retarding recrystallization leading to the formation of BaSO4 mesocrystals

    Direct observation of heavy metal – mineral association from the Clark Fork River Superfund Complex: implications for metal transJAROSITE

    No full text
    Abstract-Two sets of samples from riverbeds and adjacent floodplains, separated by 80 river kilometers, were collected from the Clark Fork River Superfund Complex, Montana, (the largest Superfund site in the United States), and studied primarily with transmission electron microscopy (TEM) with several supporting techniques to determine heavy metal-mineral association. Seven of the eight samples studied were strongly influenced by material that once resided in mining and smelting dumps and impoundments; this material was transported downstream sometime during the last century and a half from the Butte/Anaconda areas. The eighth sample was from a deeper floodplain level and dates to premining days. The TEM observations afford a direct look, down to the nanometer level, at secondary mineral formation as a result of the breakdown of sulfides and silicates in the acid environment of this massive mine-drainage system. In the shallow, oxic floodplain sediments, heavy metals of concern in this system (As, Cu, Pb, and Zn) are taken up by the formation of sulfates (particularly Pb in jarosite), as well as hydrous metal oxides (As, Cu, Pb, and Zn in and on ferrihydrite, and a possibly new vernadite-like mineral). The oxides are long-lived in these systems, as they were also found in the anoxic riverbeds. Metals are also taken up by the formation of sulfides in sulfatereducing environments as observed in the formation of nanoclusters of chalcopyrite and sphalerite. In all samples, clays make up between 5 and 20% of the sediment and carry significant amounts of Cu and Zn. The hydrous oxides, secondary sulfides, and clays provide several routes for metal transport downstream over long distances. Besides the potential bioavailability of heavy metals exchanged on and off the hydrous metal oxides and clays, nanometer-sized sulfides may also be highly reactive in the presence of biologic systems
    corecore