362 research outputs found

    Photon propagation in a discrete fiber network: An interplay of coherence and losses

    Full text link
    We study light propagation in a photonic system that shows stepwise evolution in a discretized environment. It resembles a discrete-time version of photonic waveguide arrays or quantum walks. By introducing controlled photon losses to our experimental setup, we observe unexpected effects like sub-exponential energy decay and formation of complex fractal patterns. This demonstrates that the interplay of linear losses, discreteness and energy gradients leads to genuinely new coherent phenomena in classical and quantum optical experiments. Moreover, the influence of decoherence is investigated.Comment: To appear in PR

    Can Zipf's law be adapted to normalize microarrays?

    Get PDF
    BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays)

    A 2D Quantum Walk Simulation of Two-Particle Dynamics

    Full text link
    Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions using an optical fiber network. With our broad spectrum of quantum coins we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong non-linearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems

    Spatio-spectral characteristics of parametric down-conversion in waveguide arrays

    Full text link
    High dimensional quantum states are of fundamental interest for quantum information processing. They give access to large Hilbert spaces and, in turn, enable the encoding of quantum information on multiple modes. One method to create such quantum states is parametric down-conversion (PDC) in waveguide arrays (WGAs) which allows for the creation of highly entangled photon-pairs in controlled, easily accessible spatial modes, with unique spectral properties. In this paper we examine both theoretically and experimentally the PDC process in a lithium niobate WGA. We measure the spatial and spectral properties of the emitted photon-pairs, revealing strong correlations between spectral and spatial degrees of freedom of the created photons. Our measurements show that, in contrast to prior theoretical approaches, spectrally dependent coupling effects have to be taken into account in the theory of PDC in WGAs. To interpret the results, we developed a theoretical model specifically taking into account spectrally dependent coupling effects, which further enables us to explore the capabilities and limitations for engineering the spatial correlations of the generated quantum states.Comment: 26 pages, 11 figure

    Process Optimization for Recombinant Protein Expression in Insect Cells

    Get PDF
    Insect cells can be used for the efficient production of heterologous proteins. The baculovirus expression vector system (BEVS) in Spodoptera frugiperda cells and the stable transformation of Drosophila melanogaster S2 cells are widely used for this purpose. Whereas BEVS is a transient expression system for rapid protein production, stable D. melanogaster cell lines are compatible with more complex processes modes. This chapter describes the setup of both systems, including steps for the generation of expression vectors and comprehensive optimization approaches. The genetic elements available in each system are described, as well as the use of different cloning and transfection methods and advanced process monitoring to achieve robust protein expression in larger-scale bioreactors

    BD2I : Normes sur l'identification de 274 images d'objets et leur mise en relation chez l'enfant français de 3 à 8 ans

    Get PDF
    The data base BD2I provides the first French norms for children of 274 pictures of objects (150 from Snodgarss and Vanderwart, 1980). Correct picture identification and naming, and identification of taxonomic and thematic associations were evaluated between 3 and 8 years. Verbal justification and strength of the associations were assessed between 4 and 8 years. All norms were collected from 80 children by age. Visual similarity was judged by 40 adults. These normative data are necessary because children are less efficient than adults in naming and also because their representations of objects relations differ from those of adults

    Nucleolar retention of a translational C/EBPα isoform stimulates rDNA transcription and cell size

    Get PDF
    The messenger RNA of the intronless CEBPA gene is translated into distinct protein isoforms through the usage of consecutive translation initiation sites. These translational isoforms have distinct functions in the regulation of differentiation and proliferation due to the presence of different N-terminal sequences. Here, we describe the function of an N-terminally extended protein isoform of CCAAT enhancer-binding protein α (C/EBPα) that is translated from an alternative non-AUG initiation codon. We show that a basic amino-acid motif within its N-terminus is required for nucleolar retention and for interaction with nucleophosmin (NPM). In the nucleoli, extended-C/EBPα occupies the ribosomal DNA (rDNA) promoter and associates with the Pol I-specific factors upstream-binding factor 1 (UBF-1) and SL1 to stimulate rRNA synthesis. Furthermore, during differentiation of HL-60 cells, endogenous expression of extended-C/EBPα is lost concomitantly with nucleolar C/EBPα immunostaining probably reflecting the reduced requirement for ribosome biogenesis in differentiated cells. Finally, overexpression of extended-C/EBPα induces an increase in cell size. Altogether, our results suggest that control of rRNA synthesis is a novel function of C/EBPα adding to its role as key regulator of cell growth and proliferation
    corecore