7 research outputs found

    Etablierung der Vielfarben Interphase FISH Dekonvolutions-Mikroskopie zur Einzelzell-Analyse

    Get PDF

    Biogemüsefibel 2024

    Get PDF
    Infos aus Praxis, Beratung und Forschung rund um den Biogemüse- und Kartoffelbau

    Multicolor Deconvolution Microscopy of Thick Biological Specimens

    No full text
    One limitation in understanding disease at the cellular level has been the inability to efficiently analyze DNA on a cell-to-cell basis within the natural tissue context. However, DNA analyses at a single-cell resolution should be instrumental for the understanding of cancer cell biology, cancer evolution, for chromosomal mosaic analysis and rare cell events, and should provide otherwise inaccessible information on essential biological processes. Here we present a fluorescence in situ hybridization-based multicolor deconvolution technique for three-dimensional microscopy. We use up to seven different color channels for probe detection, which allows the simultaneous high-resolution localization of multiple point-like sources within a biological specimen with a thickness of up to 30 μm. In addition, a DNA counterstain is used for volume labeling of the nuclei offering the opportunity for a simultaneous segmentation of nuclei. Furthermore, as the instrumentation consists of a standard fluorescence microscope it represents a low-cost method as compared to confocal microscopy

    An optimized probe set for the detection of small interchromosomal aberrations by use of 24-color FISH.

    Get PDF
    The rapid spread of the use of new 24-color karyotyping techniques has preceded their standardization. This is best documented by the fact that the exact resolution limits have not yet been defined. Indeed, it is shown here that a substantial proportion of interchromosomal aberrations will be missed by all multicolor karyotyping systems currently in use. We demonstrate that both the sensitivity and the specificity of 24-color karyotyping critically depend on the fluorochrome composition of chromosomes involved in an interchromosomal rearrangement. As a solution, we introduce a conceptual change in probe labeling. Seven-fluorochrome sets that overcome many of the current limitations are described, and examples of their applications are shown. The criteria presented here for an optimized probe-set design and for the estimation of resolution limits should have important consequences for pre- and postnatal diagnostics and for research applications
    corecore