268 research outputs found

    Assessing functional novelty of PSI structures via structure-function analysis of large and diverse superfamilies

    Get PDF
    The structural genomics initiatives have had as one of their aims to improve our understanding of protein function by providing representative structures for many structurally uncharacterised protein families. As suggested by the recent assessment of the Protein Structure Initiative (Structural Genomics Initiative, funded by the NIH), doubts have arisen as to whether Structural Genomics as initially planned were really beneficial to our understanding of biological issues, and in particular of protein function.
A few protein domain superfamilies have been shown to account for unexpectedly large numbers of proteins encoded in fully sequenced genomes. These large superfamilies are generally very diverse, spanning a wide range of functions, both in terms of molecular activities and biological processes. Some of these superfamilies, such as the Rossmann-fold P-loop nucleotide hydrolases or the TIM-barrel glycosidases, have been the subject of extensive structural studies which in turn have shed light on how evolution of the sequence and structure properties produce functional diversity amongst homologues. Recently, the Structure-Function Linkage Database (SFLD) has been setup with the aim of helping the study of structure-function correlations in such superfamilies. Since the evolutionary success of these large superfamilies suggests biological importance, several Structural Genomics Centers have focused on providing full structural coverage for representatives of all sequence families in these superfamilies.
In this work we evaluate structure/function diversity in a set of these large superfamilies and attempt to assess the quality and quantity of biological information gained from Structural Genomics.
&#xa

    CATHEDRAL: A Fast and Effective Algorithm to Predict Folds and Domain Boundaries from Multidomain Protein Structures

    Get PDF
    We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure–based method (using graph theory) to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these domains are already classified in CATH, CATHEDRAL will considerably facilitate the automation of protein structure classification

    FunTree: a resource for exploring the functional evolution of structurally defined enzyme superfamilies.

    Get PDF
    FunTree is a new resource that brings together sequence, structure, phylogenetic, chemical and mechanistic information for structurally defined enzyme superfamilies. Gathering together this range of data into a single resource allows the investigation of how novel enzyme functions have evolved within a structurally defined superfamily as well as providing a means to analyse trends across many superfamilies. This is done not only within the context of an enzyme's sequence and structure but also the relationships of their reactions. Developed in tandem with the CATH database, it currently comprises 276 superfamilies covering ~1800 (70%) of sequence assigned enzyme reactions. Central to the resource are phylogenetic trees generated from structurally informed multiple sequence alignments using both domain structural alignments supplemented with domain sequences and whole sequence alignments based on commonality of multi-domain architectures. These trees are decorated with functional annotations such as metabolite similarity as well as annotations from manually curated resources such the catalytic site atlas and MACiE for enzyme mechanisms. The resource is freely available through a web interface: www.ebi.ac.uk/thorton-srv/databases/FunTree

    Protein function prediction using domain families

    Get PDF
    Here we assessed the use of domain families for predicting the functions of whole proteins. These 'functional families' (FunFams) were derived using a protocol that combines sequence clustering with supervised cluster evaluation, relying on available high-quality Gene Ontology (GO) annotation data in the latter step. In essence, the protocol groups domain sequences belonging to the same superfamily into families based on the GO annotations of their parent proteins. An initial test based on enzyme sequences confirmed that the FunFams resemble enzyme (domain) families much better than do families produced by sequence clustering alone. For the CAFA 2011 experiment, we further associated the FunFams with GO terms probabilistically. All target proteins were first submitted to domain superfamily assignment, followed by FunFam assignment and, eventually, function assignment. The latter included an integration step for multi-domain target proteins. The CAFA results put our domain-based approach among the top ten of 31 competing groups and 56 prediction methods, confirming that it outperforms simple pairwise whole-protein sequence comparisons

    CATH: comprehensive structural and functional annotations for genome sequences.

    Get PDF
    The latest version of the CATH-Gene3D protein structure classification database (4.0, http://www.cathdb.info) provides annotations for over 235,000 protein domain structures and includes 25 million domain predictions. This article provides an update on the major developments in the 2 years since the last publication in this journal including: significant improvements to the predictive power of our functional families (FunFams); the release of our 'current' putative domain assignments (CATH-B); a new, strictly non-redundant data set of CATH domains suitable for homology benchmarking experiments (CATH-40) and a number of improvements to the web pages

    New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures.

    Get PDF
    CATH version 3.5 (Class, Architecture, Topology, Homology, available at http://www.cathdb.info/) contains 173 536 domains, 2626 homologous superfamilies and 1313 fold groups. When focusing on structural genomics (SG) structures, we observe that the number of new folds for CATH v3.5 is slightly less than for previous releases, and this observation suggests that we may now know the majority of folds that are easily accessible to structure determination. We have improved the accuracy of our functional family (FunFams) sub-classification method and the CATH sequence domain search facility has been extended to provide FunFam annotations for each domain. The CATH website has been redesigned. We have improved the display of functional data and of conserved sequence features associated with FunFams within each CATH superfamily

    Exploiting protein family and protein network data to identify novel drug targets for bladder cancer

    Get PDF
    Bladder cancer remains one of the most common forms of cancer and yet there are limited small molecule targeted therapies. Here, we present a computational platform to identify new potential targets for bladder cancer therapy. Our method initially exploited a set of known driver genes for bladder cancer combined with predicted bladder cancer genes from mutationally enriched protein domain families. We enriched this initial set of genes using protein network data to identify a comprehensive set of 323 putative bladder cancer targets. Pathway and cancer hallmarks analyses highlighted putative mechanisms in agreement with those previously reported for this cancer and revealed protein network modules highly enriched in potential drivers likely to be good targets for targeted therapies. 21 of our potential drug targets are targeted by FDA approved drugs for other diseases - some of them are known drivers or are already being targeted for bladder cancer (FGFR3, ERBB3, HDAC3, EGFR). A further 4 potential drug targets were identified by inheriting drug mappings across our in-house CATH domain functional families (FunFams). Our FunFam data also allowed us to identify drug targets in families that are less prone to side effects i.e., where structurally similar protein domain relatives are less dispersed across the human protein network. We provide information on our novel potential cancer driver genes, together with information on pathways, network modules and hallmarks associated with the predicted and known bladder cancer drivers and we highlight those drivers we predict to be likely drug targets

    Predicting Protein Function with Hierarchical Phylogenetic Profiles: The Gene3D Phylo-Tuner Method Applied to Eukaryotic Genomes

    Get PDF
    “Phylogenetic profiling” is based on the hypothesis that during evolution functionally or physically interacting genes are likely to be inherited or eliminated in a codependent manner. Creating presence–absence profiles of orthologous genes is now a common and powerful way of identifying functionally associated genes. In this approach, correctly determining orthology, as a means of identifying functional equivalence between two genes, is a critical and nontrivial step and largely explains why previous work in this area has mainly focused on using presence–absence profiles in prokaryotic species. Here, we demonstrate that eukaryotic genomes have a high proportion of multigene families whose phylogenetic profile distributions are poor in presence–absence information content. This feature makes them prone to orthology mis-assignment and unsuited to standard profile-based prediction methods. Using CATH structural domain assignments from the Gene3D database for 13 complete eukaryotic genomes, we have developed a novel modification of the phylogenetic profiling method that uses genome copy number of each domain superfamily to predict functional relationships. In our approach, superfamilies are subclustered at ten levels of sequence identity—from 30% to 100%—and phylogenetic profiles built at each level. All the profiles are compared using normalised Euclidean distances to identify those with correlated changes in their domain copy number. We demonstrate that two protein families will “auto-tune” with strong co-evolutionary signals when their profiles are compared at the similarity levels that capture their functional relationship. Our method finds functional relationships that are not detectable by the conventional presence–absence profile comparisons, and it does not require a priori any fixed criteria to define orthologous genes

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space

    Get PDF
    We present an analysis of 203 completed genomes in the Gene3D resource (including 17 eukaryotes), which demonstrates that the number of protein families is continually expanding over time and that singleton-sequences appear to be an intrinsic part of the genomes. A significant proportion of the proteomes can be assigned to fewer than 6000 well-characterized domain families with the remaining domain-like regions belonging to a much larger number of small uncharacterized families that are largely species specific. Our comprehensive domain annotation of 203 genomes enables us to provide more accurate estimates of the number of multi-domain proteins found in the three kingdoms of life than previous calculations. We find that 67% of eukaryotic sequences are multi-domain compared with 56% of sequences in prokaryotes. By measuring the domain coverage of genome sequences, we show that the structural genomics initiatives should aim to provide structures for less than a thousand structurally uncharacterized Pfam families to achieve reasonable structural annotation of the genomes. However, in large families, additional structures should be determined as these would reveal more about the evolution of the family and enable a greater understanding of how function evolves
    corecore