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Abstract

Here we assessed the use of domain families for predicting the functions of whole proteins. These ‘functional
families’ (FunFams) were derived using a protocol that combines sequence clustering with supervised cluster
evaluation, relying on available high-quality Gene Ontology (GO) annotation data in the latter step. In essence, the
protocol groups domain sequences belonging to the same superfamily into families based on the GO annotations
of their parent proteins. An initial test based on enzyme sequences confirmed that the FunFams resemble enzyme

(domain) families much better than do families produced by sequence clustering alone. For the CAFA 2011
experiment, we further associated the FunFams with GO terms probabilistically. All target proteins were first
submitted to domain superfamily assignment, followed by FunFam assignment and, eventually, function
assignment. The latter included an integration step for multi-domain target proteins. The CAFA results put our
domain-based approach among the top ten of 31 competing groups and 56 prediction methods, confirming that
it outperforms simple pairwise whole-protein sequence comparisons.

Background

Motivation

Most proteins consist of multiple domains [1,2], owing to
the modular recombination of domains throughout pro-
tein evolution ('domain shuffling’) [3,4]. This means that
there exist many more pairwise homology relationships
between individual domain sequences than between
whole-protein sequences. Exploiting this fact can increase
the sensitivity of protein function prediction (ProFP)
approaches, as has already been demonstrated for a sim-
ple protocol based on pairwise sequence comparisons in
[5]. Extending on this, it should be possible to improve
any ProFP method that is based on protein sequence
comparisons by performing these comparisons on the
domain level instead and, subsequently, integrating the
results obtained for all domains. One of the key chal-
lenges in this is the association of domain families with
protein functions.
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Existing methods

There exist two (partly) manually curated meta-resources
that aim to functionally characterise protein domain
families, InterPro [6,7] and CDD [8]. However, most of
this information is still stored in free text. While the Inter-
Pro2GO mapping [6,7], including Pfam2GO, is manually
curated, several methods to derive domain-specific anno-
tations automatically have been published to date. They all
use protein GO annotations and domain assignments, the
latter made using sets of predefined domain families such
as those found in Pfam [9].

Schug and colleagues developed a rule-based approach
[10]. A set of GO-annotated proteins is initially scanned
against a set of domain families using (RPS-)BLAST [11].
For a given family, the hit list is first sorted by p-value.
Different types of rules are then associated with specific
p-value thresholds. For example, a ‘single function’ rule is
generated when the first N hits in the list have only a sin-
gle, shared most specific GO annotation. Other rule
types are more sophisticated, taking into account varying
annotation specificity and missing annotations.

The GOTrees method [12] made it possible to also
resolve joint functions of consistently co-occurring
domains. It initially models the domain content of all
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training proteins as a presence/absence vector. The
domain vectors are then mapped to GO terms, creating a
decision tree for each term that best separates those pro-
teins (i.e., single domains or domain combinations) that
are assigned the term from the rest.

Two protocols that extend on the Pfam2GO approach
were later presented by Forslund and Sonnhammer [13].
MultiPfam2GO is a straightforward generalisation to
multi-domain sets: the smallest possible set that consis-
tently occurs in proteins associated with a given GO term
(set) is associated with that term (set). The second proto-
col accounts for sparse or missing GO annotations and
domain assignments, using a naive Bayesian network clas-
sifier to associate domain sets with GO terms (or term
sets) probabilistically.

SCOP2GO [14] associates SCOP structural domains
(folds) with GO terms. The domain composition of all
proteins assigned a given term T is collected in a matrix,
followed by an iterative protocol. First, the domain D with
the highest occurrence count in the matrix is associated
with T, labelling all instances of D in protein sets as
T-associated. All co-occurring domains are labelled as not
T-associated. Second, all D-containing proteins are
removed. The protocol iterates until no protein is left. For
each domain D, the likelihood of it ‘encoding’ function
T is then calculated. In this manner, functions can be
associated with multiple domain types, and vice versa.

Overall strategy

A common sequence-based ProFP approach is the assign-
ment of target proteins to an existing library of protein
families, for example, those found in PANTHER [15] or
TIGRFAMs [16], where each family is associated with an
overall protein function (Figure 1a). Correspondingly, our
method assigns each identified domain in a given target
protein to an initially established library of domain families
(Figure 1b), where each family is associated probabilisti-
cally with a set of protein functions. In this manner, we
take into account the appearance of domains in different
multi-domain and, therefore, functional contexts. The
function assignments obtained for all domains are further
integrated into whole-protein function predictions using a
simple protocol.

Importantly, while the already existing domain super-
families as defined in CATH [17] and populated in
Gene3D [18] collect structurally (but not necessarily
functionally) similar domain sequences, they provided
the framework for family identification: each superfamily
was divided into families.

Comparison with GeMMA

We have already described a protocol for family identifica-
tion below the superfamily level, GeMMA [19]. This was
based on a high-throughput method for profile-based
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sequence clustering (sampling step). Families were identi-
fied based on ‘cutting’ the produced dendrogram
of sequence clusters at a fixed level of clustering granular-
ity (selection step). The granularity setting was deri-
ved by training on a small set of hand-curated domain
superfamilies.

The ‘functional domain families’ (FunFams) that we
used to predict protein function in CAFA 2011 were
derived using the same sampling method, but with a
new, supervised selection procedure. This directly uses
Gene Ontology (GO) [20] protein function annotation
data (similar to the protocols described above), and can
therefore partition the superfamily dendrogram into
functional families much more precisely. The new strat-
egy further makes it possible to cluster the superfamilies
non-exhaustively in the sampling step, that is, to only
cluster those member sequences that are functionally
characterised to some extent.

Figure 2 summarises the differences between the origi-
nal GeMMA protocol (a) and the CAFA FunFam proto-
col (b) by use of an example. Both parts shows the partial
clustering dendrogram of a given domain superfamily,
processed with either method. The clusters are coloured
by the functions (annotations) of the sequences they con-
tain, respectively; grey indicates a lack of annotations.

An immediately obvious difference between the two
parts of Figure 2 is that the grey clusters are not part of
the dendrogram in part b. This is because these clusters
represent (parents of) starting clusters that do not con-
tain annotated sequences (see below for how the starting
clusters are derived and annotation quality require-
ments). Unannotated starting clusters are removed prior
to clustering in the FunFam protocol.

The GeMMA protocol stops the clustering at a fixed
granularity level of E = 10™°, In the example in Figure 2
this would produce three families for the shown part of
the superfamily dendrogram (a; arrows). In contrast, the
FunFam protocol identifies different clusters as putative
families (b; arrows). This is based on tracing the dendro-
gram as a whole and identifying the individual points at
which clusters (sequences) with different associated func-
tions get merged.

Methods

Domain family identification

This section describes the family identification proto-
col step-by-step, for an individual Gene3D domain
superfamily.

Step 1 - Data preparation

All domain sequences in the superfamily are pooled into a
single FASTA file. The UniProtKB-GOA [21] annotations
for all the corresponding parent proteins are obtained and
filtered for high-quality annotations. In this, the following
annotations are kept: all non-IEA (whether manually
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Figure 1 Protein families versus protein domain families in protein function prediction. (a) Six evolutionarily related families of proteins
with assigned domains. The proteins are coloured by function, where mixed colouring indicates multi-functionality. The domain dashing
patterns indicate different superfamilies. A protein family resource would build one model per protein family (middle; coloured squares) and
scan target proteins with these models, to assign them to families. (b) The domains from the proteins in (a) in their domain superfamilies,
coloured by the function of the respective parent protein. Each superfamily is subdivided into functional families (dashed lines), based on the
protocol described in the main text. Note that domains from functionally very similar proteins (red, orange, yellow) can go to the same family.
The domain-based protein function prediction protocol first identifies domains in the target protein (bottom) and then scans each domain
sequence with the functional family models available for its domain superfamily (middle). Each functional family is associated probabilistically
with different whole-protein functions. Based on the family assignments of the individual domains, a combined function prediction for the
whole protein is made. The best-scoring protein and domain family models are highlighted with a bold border in (a) and (b), respectively.
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Figure 2 Comparison of the GeMMA and FunFam family identification protocols. (a) The partial GeMMA clustering dendrogram of a
sequence superfamily. Different colours correspond to the protein functions associated with the clusters; grey indicates a lack of annotations.

(b) The corresponding part of the dendrogram when using the FunFam protocol. Note that unannotated starting clusters (grey) are here
removed prior to clustering. The COMPASS [33] E-values at the bottom of both subfigures reflect the maximum sequence profile similarity
observed between any two clusters at a given point, which decreases in the course of clustering [19]. The number of clusters (shown in this part
of the dendrogram) that still exist when stopping the clustering at a given granularity level is stated at the top. Arrows indicate which clusters
are eventually selected to represent functional families.
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derived or curated) GO annotations to proteins in
SwissProt and TrEMBL [22] as well as all IEA annotations
to proteins in SwissProt that were made using either the
SwissProt Keyword2GO [23] or the EC2GO [24] mapping
methods. Both the latter methods have been shown to
exhibit higher accuracy than the remaining ones [23,25]
and, owing to the restriction to SwissProt proteins, primar-
ily represent a ‘translation’ of manually curated SwissProt
keyword and EC [26] annotations to GO annotations.
Finally, only the most specific terms are kept for each pro-
tein, that is, any GO parent terms are removed.

The datasets used were Gene3D v9.2, GO term defini-
tions dated 15/05/2010 and UniProtKB-GOA annota-
tions dated 24/09/2010.

Step 2 - Sequence clustering

The superfamily sequences are pre-clustered at 90%
pairwise sequence identity using the high-speed but
low-precision clustering tool CD-HIT [27]. All non-
annotated clusters (such that do not contain at least one
sequence with high-quality GO annotation(s); see above)
are removed from the set of obtained non-redundant
clusters. This results in a set of ‘starting clusters’ for the
profile-based hierarchical clustering algorithm described
in [19], which is now used to further cluster the starting
clusters until only a single cluster remains.

Step 3 - Cluster analysis

All sequence clusters in the generated dendrogram are
processed and assessed for functional coherence using the
following assumptions and algorithms. The assessment
protocol was designed according to the requirement of
using GO annotation data; note that it could be much
simpler for EC data, for example, as will become clear in
the following. Figure 3 serves as a guideline through the
cluster analysis workflow, also listing the most important
term sets used in the process.

The sequence and cluster term sets

The parent proteins of the domain sequences in a given
cluster are associated with high-quality GO annotations
(see above), the sequence term sets. The union of all
sequence term sets is the cluster term set. Terms of the
molecular function (MF) type define subsets in both cases:
the sequence MF term sets and the cluster MF term set.
Due to the nature and character of GO annotations, the
sizes of all sequence-specific term sets and the specificity
of the terms they contain vary.

The cluster core term set

While a detailed discussion of the relationship between
GO MF annotations and individual protein domains (and
the relationship between whole-protein and domain
function in general) is beyond the scope of this work, the
following simple assumptions should hold. First, the
more domains a protein has the more functionally com-
plex it will usually be, and the more MF terms it will
have (and vice versa). Therefore, small sequence MF term
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sets (particularly of size 1) associated with domains in a
cluster often stem from single-domain proteins, captur-
ing only the function of the particular domain under
inspection. Second, essential terms that describe key
parts of protein function (e.g., a certain enzymatic activ-
ity) are less likely to be missing from a protein’s MF
annotations than less important, ‘ancillary’ terms (e.g., a
cofactor-binding activity that is already implied in the
catalytic activity). This is because such partial functions
are less likely to be explicitly confirmed and/or reported
by authors in the first place, and, therefore, less likely to
be curated and/or annotated later on. Taken together,
the sequence MF term sets of minimum size are a good
starting point for compiling a core term set ('core set’) for
a cluster, based on which its functional coherence is sub-
sequently assessed.

Figure 4a shows a simple example annotation scenario,
where a cluster contains four domain sequences with con-
served reductase activity; these are the centred domains
(domain II) in the parent protein chains on the left,
respectively. This domain is multi-functional in the sense
that it can perform the same reaction on a range of highly
similar (co-)substrates (Figure 4a; bottom). For simplicity,
the other domains in these proteins are assumed to have
scaffold function only. The (partially incomplete) annota-
tions of the parent proteins are shown on the right. In this
example the initial core set is (C1, P1), based on the two
sequences associated with a single MF term (the smallest
occurring sequence MF term sets).

After compiling the initial core set as described above,
this is processed further, in two steps. First, for any term
occurring with those sequences whose MF term sets have
a size greater than the minimum size observed (those that
were not considered when compiling the initial core set;
see above), the presence of GO parent terms in the initial
core set is assessed. All terms that are (more specific) chil-
dren of core terms and are not already part of the initial
core set are added to this set. In the example in Figure 4a,
these are C2 and C3, both children of P1. Second, any par-
ent terms in the (now extended) initial core set are
removed (P1). The resulting, final core set comprises the
most specific out of all putatively essential annotations
that occur in a cluster (C1, C2 and C3 in this case), and
only those.

In addition to the simple example scenario in Figure
4a, as discussed above, part b shows a more complex
situation. Here, a range of essential (core), non-essential
(extra) and foreign-domain annotations is associated
with the domain sequences in the inspected cluster
(domain I in the parent protein chains on the left,
respectively), via their parent proteins. The core set is
established according to the above-described steps.
Therefore, the initial core set is (P1, P2) and the final
core set is (C1, C2).
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Figure 3 The sequence and cluster term sets involved in assessing cluster functional coherence. The sequences in a given domain
sequence cluster are associated with different GO term sets via their parent proteins. Each sequence term set can be split into MF, BP and CC
term subsets. If any of the sequence MF term sets is not empty, a set of core MF terms for the cluster is compiled from all sequence MF term
sets, and, via further, intermediate steps, a set of terms to be ignored in cluster assessment is compiled. If none of the sequence term sets
contains MF terms, the filter term set is an empty set. In the next step, the initial cluster term set is prepared as the union of all representative
sequence term sets. From this set, any terms that are also found in the filter term set are removed (filtered), yielding the final cluster term set.
Like the sequence term sets, the cluster term set can be split into MF, BP and CC subsets. The term-type specific sets of the representative
sequences are compared with those of the cluster as a whole, respectively, to assess the functional coherence of the sequences in the cluster.
Key term sets in the described process are highlighted in bold.

Annotation editing

The core term set as introduced above is a heuristic
means to identify and remove non-essential and foreign-
domain annotations (see above) from the cluster term

set. This editing process is important for a sensible

assessment of functional coherence, as described further
below. First, two term sets are created. The core terms
and all their GO parent terms together form the initial
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Figure 4 Two example domain sequence clusters and the associated protein function annotations. All domains are coloured and labelled
according to their true functions; the available high-quality GO annotations of the parent proteins are shown on the right, respectively. The GO
terms are coloured according to the protein functions they describe, and their hierarchical relationships in the GO DAG are shown at the
bottom, respectively (dashed lines represent omitted intermediate terms). Both clusters (dashed boxes) represent functional domain families
according to criteria outlined in the main text. The three reductase functions in (a) are closely related, as indicated by the three-functional
cluster member sequences. In (b), the hydrolase function is perfectly conserved among all member domain sequences. Note that both the true
domain functions and the types of the available annotations (core, extra and foreign-domain; see main text) are ‘invisible’ to the core set
identification protocol. The small numbers next to specific functions indicate in which step of the iterative protocol described in the main text
they are identified as ‘core-associated’ functions (see annotation editing section).
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core-associated term set. The filter set is initially empty.
It is populated in the following iterative procedure and
subsequently used to filter the cluster term set.

In the first iteration, all sequence MF term sets with
greater than minimum size (see above) are analysed one
by one, as follows. First, all terms in the set are checked
for whether or not they are core-associated. If at least
one such term is found, all terms in the set that are not
yet registered as core-associated are denoted. After asses-
sing all sequence MF term sets, it is checked whether any
novel core-associated terms have been identified. If this
is the case, these terms are added to the core-associated
term set, together with the union of all their GO child
and parent terms. All these terms are also added to the
filter set. Subsequently, all sequence MF term sets are
assessed afresh. The iterative term set assessment proce-
dure continues until no further core-associated terms are
identified. As a result, the filter set contains all core-asso-
ciated terms identified (including transitive identifica-
tion), except the core terms themselves.

The core-associated terms that are added to the filter
set in the process described above are expected to repre-
sent non-essential and foreign-domain annotations, with
respect to the function(s) of the domain sequences in the
processed cluster. The ‘associated” here means that these
terms co-occur with core terms, whilst not being core
terms themselves.

The example in Figure 4b can serve to illustrate how the
filter term set is progressively populated with non-essential
and foreign-domain terms. The core set here is (C1, C2).
In the first iteration of assessing the sequence MF term
sets, E1, a non-essential (extra) term, is identified as core-
associated (iteration indicated by the small number next
to the term). This is based on its co-annotation with C1, a
core term. At the same time, F2, a foreign-domain term, is
identified as core-associated too, based on its co-annota-
tion with the core parent term P3. F1, however, is only
identified as core-associated in the second iteration, due to
its co-annotation with E1, a core-associated term. In the
simpler scenario in Figure 4a no extra or foreign-domain
terms are annotated. Therefore, no core-associated terms
are identified in the single iteration that is carried out.
Coherence assessment
After core set identification and, based on this, editing the
cluster term set, the functional coherence of the cluster is
assessed. The assessment is based on the most suitable
available GO term type, in the following order: molecular
function (MF), biological process (BP) and cellular compo-
nent (CC). This corresponds to the relevance of each term
type when trying to identify functionally coherent
sequence families. Only if the term set of a given cluster
does not contain terms of a specific type at all, the next
type in the above list is used. Note that only MF annota-
tions directly describe the mechanistic function(s) of
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individual proteins (and domains), and that the above-
described steps only concern the MF annotations, leaving
the BP and CC parts of the cluster term set untouched.
After determining which GO term type is used to
assess the functional coherence of the cluster, the assess-
ment term type T,, the protocol proceeds with compiling
the necessary data. First, all T,-type terms are collected
from the cluster term set, forming the cluster T, term
set. Second, all sequences with at least one T,-type term
are compiled, and the corresponding sequence T, term
sets determined. The following step marks the core of
the assessment protocol. All sequence T, term sets are
compared with the cluster T, term set. If at least one of
the sequence term sets covers all the terms in the cluster
term set, the cluster is judged functionally coherent. The
overall strategy outlined is tolerant towards inconsistent
and missing GO annotations, unlike, for example, a sim-
ple rule requiring all sequence annotations for a given
cluster to match exactly.
Step 4 - Dendrogram pruning
Finally, after assessing all domain sequence clusters as
described above, those that are not judged functionally
coherent are removed from the clustering dendrogram.
This splits the dendrogram into sub-trees, since the level
of cluster functional coherence generally decreases
between the leaf nodes and the root node. Only the root
clusters of all derived sub-trees are retained, forming a
set of functional families in the superfamily.

Protein function prediction

This section describes how the identified domain families
were used for protein function prediction in CAFA 2011.
Step 1 - Generating family model libraries

For each family identified in a given superfamily an align-
ment is generated using MAFFT with high-quality set-
tings ('—amino —localpair —maxiterate 1000’) and, based
on this, a profile HMMs is built using the HMMER3 [28]
hmm_build command with default settings.

Step 2 - Associating families with functions

Each family is further associated probabilistically with pro-
tein functions, in the following manner. First, for each
most specific GO term that is associated with the family
(via one or more of the corresponding parent proteins), it
is counted how often it is associated with individual
sequences. The resulting number T ranges from 1 to the
number of domains in the family N. Second, all counts are
up-propagated in the GO DAG so that coarser terms can
be supported by more specific child terms. Finally, the
family is associated with all terms that received a count in
the above process, each with a term-specific probability
value p. This is simply derived as the normalised term
occurrence count or annotation frequency: p = T/N, ran-
ging from O to 1. Note that this simple approach is agnos-
tic about the overall domain architecture of the parent
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proteins and thereby implicitly takes into account the like-
lihood of other domains (with other functions) to co-
occur with domains from the processed family in known
proteins.

Figure 1b at the start of this paper can serve as a worked
example for the above-described process. Here, each col-
our corresponds to a specific GO term. For example, the
‘vellow-orange’ family in the left superfamily would have
the following functions associated: ‘yellow’, with probabil-
ity 3/6 = 0.5; ‘orange’, with probability 3/6 = 0.5. This is
assuming that a yellow and orange colouring of the same
sequence means it is associated with both functions (e.g.,
using two different enzyme substrates) via its parent pro-
tein (Figure 1la). Accordingly, the violet family in the right
superfamily in Figure 1b has only the function ‘violet’ asso-
ciated, with probability 3/3 = 1.0.

Step 3 - Family and function assignment

All target proteins are first assigned CATH domains, using
the standard protocol that is also followed for generating
the Gene3D resource [29]. The identified domain
sequences in each superfamily are then scanned against
the superfamily’s family model library using the HMMER3
hmm_scan command with default options. Based on the
results of this, the sequences are associated with GO
terms and corresponding p-values (see above). For CAFA
2011, the simplest possible term assignment protocol led
to the best observed performance: only the top-scoring
(bit score) model is taken into account and all GO term
probabilities associated with the corresponding family are
assigned to the query sequence. Finally, a simple integra-
tion procedure provides the whole-protein GO term
assignments: the whole-protein probability score for each
GO term is set to the maximum domain-based probability
score obtained for the term, respectively.

The target protein at the bottom of Figure 1 has
domains in the ‘yellow-orange’ and ‘violet’ families (Figure
1b) that have already served as an example in the previous
section (the best-hit models are highlighted with a bold
border in Figure 1). According to the process described
above and the term probabilities associated with these
families (see previous section), its predicted annotation
would therefore be: ‘orange’ (0.5); ‘yellow’ (0.5); ‘violet’
(1.0).

A more sophisticated approach that uses model-specific
thresholds when scanning the domain sequences, takes
into account hits to all models hit above the respective
threshold and, based on relative model weights (derived
from the absolute hit scores), integrates the term probabil-
ities over all models, did not lead to superior performance.

Measuring performance

Family quality

For the enzyme superfamily benchmark, 467 Gene3D
superfamilies with EC annotations were compiled. A
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domain superfamily belonged to this set if it had at least
two different four-digit EC annotations (EC4s) associated
with its domains’ parent proteins. EC annotations were
taken from the UniProtKB-GOA file, where they are stated
for EC2GO-mapped terms. Retrieving the ECs from Uni-
ProtKB directly, with a query that filters for high-quality
annotations only ['not (name:putative or name:probable
or name:potential or name:possible or name:likely or
name:unknown or name:uncharacterised or name:unchar-
acterized) and fragment:no and precursor:no and
reviewed:yes and EC:*"], did not alter the results markedly.
A simple EC-based performance measure for arbitrary
family partitionings was used, which equally considers
the average number of different EC4s per family (diver-
sity, a specificity measure) and the average number of
families per EC4 (division, a sensitivity measure). The
raw performance score is thus given as the arithmetic
mean of average family diversity and division. The lowest
value it can assume is 1, that is, if none of the produced
families are functionally diverse and there is only one
family per function. Averaging over all analysed superfa-
milies yields an average performance (AP) score. The
degree to which the underlying raw scores vary reflects
the degree to which the quality of the produced family
partitionings varies for the different superfamilies
processed.
Protein function prediction performance
The CAFA 2011 assessment methodology is described
elsewhere in this special issue.

Results

Family identification in Gene3D superfamilies

Using the described protocol, families could be identified
in 1,793 (~75%) of the 2,382 protein domain superfami-
lies in Gene3D 9.2. For the remaining ~25% of (mostly
small) superfamilies, no high-quality GO annotation data
was available. The union of GO annotations used was
associated with 338,116 distinct UniProtKB protein
sequences.

Family quality
The degree of sequence and (parent protein) function
diversity varies highly among the domain superfamilies in
Gene3D, corresponding to the different degrees of versati-
lity and evolutionary ‘success’ of individual domain types
[19]. Using function annotation data should therefore
yield much better family partitionings than the use of clus-
tering (at a fixed granularity level) alone. To confirm this
expectation, FunFam families and GeMMA families were
compared, based on a test set of 466 superfamilies with
high-quality enzyme annotations (EC4s). The results are
shown in Figure 5.

The bars in Figure 5a state how often the family parti-
tionings obtained by using either the FunFam protocol or
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GeMMA clustering alone, with one of eleven fixed granu-
larity settings, produce or share the top performance score
(we used a fixed setting of E = 10*° in [19]). This relative
measure does not take into account the absolute scores
and how much they differ. The apparently significant
advantage of the FunFam protocol is slightly diminished
when looking at part b of the figure, a box and whisker
plot showing the average performance scores obtained
(lower is better; see above) and the distribution of the
underlying raw scores. The data indicate that, in many
cases, the E = 107 clustering granularity setting yields a
family partitioning that is close to the FunFam one in
quality (AP scores of 1.85 vs. 1.54). On the other hand, the
FunFam protocol performs significantly more consistently
among the test superfamilies. This is indicated by the very
short whiskers (indicating the minimum and maximum
values observed) as compared with the remaining bars.
Even when extreme outlier values (those close to the max-
imum values observed; see top of Figure 5b) are removed
from the dataset, the general trend still holds (data not
shown). Outliers may arise, for example, from superfami-
lies with incomplete EC annotation data.

Protein function prediction performance

Using the FunFam domain families in the CAFA 2011
protein function prediction challenge, we performed
among the top ten of 31 research groups taking part. The
CAFA results further support the notion that our method
generally outperforms a naive BLAST [11] best-hit
approach in terms of sensitivity; of course, only given
that Gene3D domains can be assigned to a target protein
in the first place. Notably, very few of the methods com-
peting in CAFA explicitly used domain sequence or other
domain-based data. The detailed CAFA results will be
published elsewhere.

The CAFA team initially provided 48,298 potential tar-
get proteins (p-targets), of which 866 eventually became
actual targets (a-targets), based on newly acquired experi-
mental annotations. A total of 60,724 Gene3D domains
could be assigned to 30,909 of the p-targets, that is, ~2
domains per assigned sequence on average. The rest of the
target proteins were either not hit by any of the Gene3D
superfamily models at all (12,752), or not well enough to
justify a domain assignment (4,636). Taken together, these
~40% of domain-less p-targets therefore reflect largely
unexplored parts of protein structure space, defining an
upper boundary for our method’s coverage. 633 (~75%) of
all a-targets were assigned a total of 1,355 domains.

The minimum number of domains identified per
p-target was 1, the maximum number was 93. The latter
corresponds to target ID T43982 (COLA_DICDI), the
>10,000 aa protein Colossin-A from slime mold. All its
93 structural domains are of the Immunoglobulin type
(CATH 2.60.40.10). The minimum number of domain
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types (different CATH superfamilies) per p-target was 1,
the maximum number was 12. The latter was found for a
bifunctional glutamate/proline-tRNA-ligase protein from
mouse, T29274 (SYEP_MOUSE). The a-target with the
most (36) domains was T31967 (FAT_RAT), a rat proto-
cadherin protein. A likely endocytic receptor from mouse,
T29022 (SORL_MOUSE), exhibited the most (4) domain
types among the a-targets.

The 60,724 identified p-target domains covered 1,662
different Gene3D superfamilies, of which 1,242 had an
available FunFam library. 60,265 of the domain sequences
fell into one of the latter superfamilies and hit at least one
of the respective FunFam models. Only 459 sequences
belonged to one of the remaining 420 superfamilies with-
out a FunFam library. In other words, the library-less
superfamilies do not significantly deteriorate the coverage
of our method as a whole. This is because they represent
very small, species-specific and largely unexplored parts of
protein function space; notably, these superfamilies could
be a good start to identify difficult targets for future assess-
ments. Only three of the CAFA a-targets had domains
exclusively belonging to superfamilies without a FunFam
library.

After integrating the domain-based GO term predic-
tions into whole-protein predictions, 30,672 of the 30,909
p-targets with Gene3D domains had at least one FunFam
and GO term assigned. Again, the small difference indi-
cates that the 420 library-less superfamilies did not
impact our method’s performance significantly. Accord-
ingly, 630 of the 633 a-targets with identified domains
could also be assigned to FunFams and, therefore, to GO
terms.

Discussion

The CAFA 2011 results put our domain-based approach
among the top ten of 31 competing groups and 56 pre-
diction methods. Apart from this quantitative result it
would of course be interesting why and in which cases
the domain-based approach outperforms such based on
whole-protein sequences. A detailed analysis will yet have
to be performed, a process in which the functional con-
tribution of individual domains and domain families to
the overall function (assignment) of specific target pro-
teins must be manually reviewed. However, we feel that
the following more general considerations are equally
important.

Family quality

Based on the results of the enzyme superfamily bench-
mark, it is clear that considering and processing the avail-
able high-quality GO annotations in the described
FunFam protocol generally leads to higher functional
purity and coherence of the produced families when
compared to using any fixed level of sequence clustering
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granularity. Note that this is not a ‘benchmark between
equals’ but rather, for the FunFam protocol, a measure of
how well GO annotations, with their highly atomistic,
incomplete and complex nature (see also below), can be
used to establish sequence groups at a level of function
conservation that is comparable to the EC4 level.
Compared to the EC system, our GO-based protocol
has the benefit of much greater sequence coverage. On
the downside, it is also much more complicated than it
would have to be for EC annotations; there, sequences
could simply be grouped by, for example, matching EC4.

Protein function prediction performance

As seen by the detailed CAFA figures given above, our
approach is currently not limited in coverage by superfa-
milies lacking annotation data and thus FunFams (func-
tional knowledge) but by the considerable number of
domain types that are known on the sequence level but
have not yet been structurally characterised, that is, lack a
CATH superfamily (structural knowledge). Notably, some
of these sequences may nucleate novel superfamilies but
have not yet entered or passed the CATH curation
process.

In general, the protocol presented here should outper-
form whole-protein based methods in terms of prediction
specificity and/or sensitivity in cases where a combination
of domains is observed in a target protein that hasn’t been
observed before and, at the same time, the individual
domains in the target protein fulfil those (partial protein)
functions that are most often fulfilled by the other mem-
bers of their FunFams (found in already characterised
proteins). The latter is because the current, simple prob-
abilistic protocol of family-to-function assignment will
result in high-confidence function predictions (GO terms
associated with high p-values) only where a certain func-
tion is associated with most of the family members. Of
course, this is tied to the problem of family granularity:
fine-grained families are functionally more conserved than
coarse-grained ones, and it is therefore easier to achieve
high p-values with them. However, their models may not
always be sensitive enough to detect novel (outlier) mem-
ber sequences in the first place. While we have tried to
find a good compromise between these poles, radical
improvements can only be expected when truly (manually
curated) domain-specific annotations are available (see
below).

Domain function versus protein function

It must be noted that, in contrast to whole-protein
(super)families, superfamilies of protein domains can be
divided into functional families following two entirely dif-
ferent strategies. This is, based on (overall) protein func-
tion or (partial) domain function. If individual domains
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were annotated with specific functions, for example,
‘binding’ or ‘catalytic activity’, a protocol slightly different
from the one presented here could be devised. This
would not have to use the annotations of the parent pro-
teins, in conjunction with a rather complicated heuristic
protocol, but could identify functional families directly
on the basis of the domain annotations. In the case of
promiscuous domains, for example, the SH3 or PDZ
interaction modules, this could lead to much larger
domain families or even to superfamilies with a single
family only. From a theoretical, evolutionary point of
view (domains as functional building blocks) and for
many practical purposes (for example, identifying con-
served functional residues), such families, in character
clearly different from whole-protein families, would be
the more ‘interesting’ and useful kind of domain families.
However, domain-specific function annotations in
machine-readable format are thus far (as of 2011) only
available in a relatively coarse form, in InterPro2GO; this
may improve in the future.

With respect to GO, the example in Figure 4b can
serve to illustrate the ‘multi-domain’ character of (some)
GO terms. This is expected, given GO’s aim to annotate
whole proteins, however, it is a problem for domain-
based protocols. P3 is such a term, describing the joint
function of different domains. It is impossible in this case
to establish a core set that reflects the function of domain
I only (ATP hydrolysis), for two reasons. First, P2, despite
its name ‘hydrolase activity’, which is a function of
domain I only, is also a parent of P3. The child terms of
P3, C1 and C2, therefore enter the core set. Second, even
if that were not the case, these terms would still enter the
core set via P1. This could only be avoided if the first
protein was associated with more terms than just P1; for
example, the missing ‘hydrolase activity’ for domain I. In
this case, P1 would not be found in a sequence term set
of minimum size (see above), unlike P2, and would there-
fore not play a role in identifying the core set.

Encouragingly, the practical application of the pro-
duced families in protein function prediction has shown
that the current strategy of probabilistic family-to-func-
tion association, where different closely related functions
and even functions mediated by co-occurring domains
can be associated with a family, still leads to predictions
with sufficient specificity.

Functional grouping versus function prediction

Notably, optimising protein (domain) family identification
and protein function prediction are two different goals. For
prediction purposes, it is not required that all sequences
with the same function(s) are pooled into a single family.
Higher performance may even be reached when several
families per homologous functional group exist; for
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example, one family for each domain of life or kingdom or,
in the case of domains, one family per different parent pro-
tein domain architecture. In both cases, the combined
detection sensitivity and the individual functional specifici-
ties of the family models can be increased when compared
to producing a single family (model) only. This is because a
wider and potentially uneven part of sequence space can be
covered on the one hand (sensitivity) and, for example,
kingdom-specific or domain-architecture specific aspects
of protein function can be captured more selectively (speci-
ficity). Depending on the degree of diversity within the
known and target sequence sets, the best results may even
be achieved by using exhaustive pairwise sequence compar-
isons instead of models.

When trying to establish protein or domain families for
uses other than ProFP only, for example, to provide a
user-friendly means of browsing sequence, structure and
function space, as desired for the CATH-Gene3D
resource, a more balanced approach is required. To illus-
trate this further: it is not acceptable, both from a theoretic
(biology) and a practical (usability) point-of-view, to pro-
duce thousands of small ‘functional families’ for a domain
superfamily whose members come from proteins with
only, for example, twenty different known and a few yet
unknown functions. This is true regardless of whether or
not a library of thousands of family models leads to higher
performance in ProFP.

The outlined differences have gained even greater
importance with the replacement of the EC system with
the Gene Ontology as the standard means of function
annotation: it is much more difficult to sensibly group
sequences by their GO annotations than to merely com-
pare the annotations of two individual sequences.

Improving the family identification process

Currently, the initial core set of MF terms that is used to
judge the functional coherence of domain sequence clus-
ters in the family identification process is compiled based
on the assumption that the parent proteins with the fewest
function annotations are also those with the fewest
domains. While this may be true in most cases, a safer
approach should be used. This would require a simple pro-
tocol to identify all N-domain parent proteins for a given
domain superfamily. For example, any protein with N
domains, together covering at least 80% of its length, could
be declared N-domain. For a given domain cluster, only
the annotations stemming from those parent proteins with
the smallest N would then be used to establish the initial
core set.

Improving the function prediction protocol

Family-based ProFP methods depend on a pre-established
library of families and are therefore somewhat ‘rigid’. In
our particular case, this means that whenever a given

Page 13 of 14

target protein sequence does not have detectable Gene3D
domains, or a detected domain represents an entirely
novel part of its superfamily’s sequence and/or function
space (none of the FunFam models are hit), this leads to a
total lack of predictions. In such cases, ProFP methods
that are based on ad-hoc sequence comparisons can still
provide functional hints (sensitivity advantage). These
have to be backed up by multiple individual hits to puta-
tive (remote and partial) homologues to be reliable,
though. This rationale is followed by methods such as
Gotcha [30], PFP [31] and ESG [32]. The models used in
family-based methods usually imply this reliability, given
the underlying set of seed sequences is diverse enough
(specificity advantage).

With the de facto standard PSI-BLAST [11] for sequence
searches, also used by PFP and ESG, the traditional specifi-
city/sensitivity dichotomy for sequence-based function
prediction crumbles. The tool iterates between sequence
comparison and profile generation, therefore trying to
combine the advantages of ad-hoc search flexibility and
profile sensitivity. Naturally, this comes at the price of los-
ing some of the performance observed with either type of
method in ‘extreme’ cases. The logical conclusion, given
the ever-decreasing cost of computation, is that both
family-based and ad-hoc methods should be run separately
for ProFP, potentially adding the more balanced PSI-
BLAST as a third ‘vote’. Predicted functions would then be
assigned higher probabilities the more methods or votes
agree. Perhaps unsurprisingly, this strategy, at least the
combination of BLAST and HMMER, was used in the
best-performing methods in CAFA (to be published).

An improved ProFP workflow that includes domain
information could look as follows. First, run the FunFam
protocol discussed here. This can be augmented with
scans against the InterPro domain family models and the
use of the InterPro2GO mapping [7]. Coverage may so be
increased, primarily because protein function space (as
captured in InterPro member resources such as Pfam and
PANTHER) is better explored than structure space (as
captured in CATH). Second, scan all target proteins
against a database of annotated sequences using PSI-
BLAST; this step may additionally be repeated for each
identified domain sequence. The BLAST results can be
processed using published algorithms such as ESG [32].
Finally, after integration with the FunFam-based (and
InterPro) predictions, output a list of function predictions
with associated probabilities.
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