6 research outputs found

    Early Detection of SARS-CoV-2 Omicron BA.4 and BA.5 in German Wastewater

    Get PDF
    Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. The Omicron sub-variants BA.4/BA.5 have spread globally, displacing the preceding variants. Due to the severe transmissibility and immune escape potential of BA.4/BA.5, early monitoring was required to assess and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/BA.5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability for detecting BA.4/BA.5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022, and the presence of BA.4/BA.5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V and NGS sequencing. Finally, the mutant fractions were quantitatively monitored by digital PCR, confirming BA.4/BA.5 as the majority variant by 5 June 2022. In conclusion, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variants spreading independently of individual test capacities

    Crystal structure of the sugar acid‐binding protein CxaP from a TRAP transporter in Advenella mimigardefordensis strain DPN7 T

    No full text
    Recently, CxaP, a sugar acid substrate binding protein (SBP) fromAdvenella mimigardefordensis strain DPN7 T, was identified as part of anovel sugar uptake strategy. In the present study, the protein was success-fully crystallized. Although several SBP structures of tripartite ATP-inde-pendent periplasmic transporters have already been solved, this is the firststructure of an SBP accepting multiple sugar acid ligands. Protein crystalswere obtained with bound D -xylonic acid, D-fuconic acid D -galactonic andD-gluconic acid, respectively. The protein shows the typical structure of anSBP of a tripartite ATP-independent periplasmic transporter consisting oftwo domains linked by a hinge and spanned by a long α-helix. By analysisof the structure, the substrate binding site of the protein was identified.The carboxylic group of the sugar acids interacts with Arg175, whereas thecoordination of the hydroxylic groups at positions C2 and C3 is mostprobably realized by Arg154 and Asn151. Furthermore, it was observedthat 2-keto-3-deoxy- D-gluconic acid is bound in protein crystals that werecrystallized without the addition of any ligand, indicating that this mole-cule is prebound to the protein and is displaced by the other ligands if theyare available

    The catabolism of 3,3'-thiodipropionic acid in Variovorax paradoxus strain TBEA6: A proteomic analysis.

    No full text
    Variovorax paradoxus strain TBEA6 is one of the few organisms known to utilize 3,3'-thiodipropionate (TDP) as the only source of carbon and energy. It cleaves TDP to 3-mercaptopropionate (3MP), which is a direct precursor for polythioester synthesis. To establish this process in V. paradoxus TBEA6, it is crucial to unravel its TDP metabolism. Therefore, a proteomic approach with subsequent deletion of interesting genes in the bacterium was chosen. Cells were cultivated with D-gluconate, TDP or 3-sulfinopropionate as the only carbon sources. Proteins with high abundances in gels of cells cultivated with either of the organic sulfur compounds were analyzed further. Thereby, we did not only confirm parts of the already postulated TDP metabolism, but also eight new protein candidates for TDP degradation were detected. Deletions of the corresponding genes (two enoyl-CoA hydratases (Ech-20 and Ech-30), an FK506-binding protein, a putative acetolactate synthase, a carnitinyl-CoA dehydratase, and a putative crotonase family protein) were obtained. Only the deletions of both Ech-20 and Ech-30 led to a TDP negative phenotype. The deletion mutant of VPARA_05510, which encodes the putative crotonase family protein showed reduced growth with TDP. The three genes are located in one cluster with genes proven to be involved in TDP metabolism. Thermal shift assays showed an increased stability of Ech-20 with TDP-CoA but not with TDP. These results indicate that Ech-20 uses TDP-CoA as a substrate instead of TDP. Hence, we postulate a new putative pathway for TDP metabolism. Ech-30 interacts with neither TDP-CoA nor TDP but might interact with other CoA-activated intermediates of the proposed pathway. Further enzyme characterization is necessary to unravel the complete pathway from TDP to 3MP

    Early detection of SARS-CoV-2 Omicron BA.4/5 in German wastewater

    No full text
    Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. Omicron sub-variants BA.4/5 have spread globally displacing the predeceasing variants. Due to the severe transmissibility and immune escape potential of BA.4/5, early monitoring was required to asses and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North-Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability to detect BA.4/5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022 and the presence of BA.4/5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V. Finally, the mutant fractions were quantitatively monitored by digital PCR confirming BA.4/5 as the majority variant by 5th June 2022. In conclusions, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variant spreading independent of individual test capacities

    Wastewater surveillance allows early detection of SARS-CoV-2 omicron in North Rhine-Westphalia, Germany

    No full text
    Wastewater-based epidemiology (WBE) has demonstrated its importance to support SARS-CoV-2 epidemiology complementing individual testing strategies. Due to their immune-evasive potential and the resulting significance for public health, close monitoring of SARS-CoV-2 variants of concern (VoC) is required to evaluate the regulation of early local countermeasures. In this study, we demonstrate a rapid workflow for wastewater-based early detection and monitoring of the newly emerging SARS-CoV-2 VoCs Omicron in the end of 2021 at the municipal wastewater treatment plant (WWTP) Emschermuendung (KLEM) in the Federal State of North-Rhine-Westphalia (NRW, Germany). Initially, available primers detecting Omicron-related mutations were rapidly validated in a central laboratory. Subsequently, RT-qPCR analysis of purified SARS-CoV-2 RNA was performed in a decentral PCR laboratory in close proximity to KLEM. This decentralized approach enabled the early detection of K417N present in Omicron in samples collected on 8th December 2021 and the detection of further mutations (N501Y, Δ69/70) in subsequent biweekly sampling campaigns. The presence of Omicron in wastewater was confirmed by next generation sequencing (NGS) in a central laboratory with samples obtained on 14th December 2021. Moreover, the relative increase of the mutant fraction of Omicron was quantitatively monitored over time by dPCR in a central PCR laboratory starting on 12th December 2021 confirming Omicron as the dominant variant by the end of 2021. In conclusions, WBE plays a crucial role in surveillance of SARS-CoV-2 variants and is suitable as an early warning system to identify variant emergence. In particular, the successive workflow using RT-qPCR, RT-dPCR and NGS demonstrates the strength of WBE as a versatile tool to monitor variant spreading
    corecore