7,609 research outputs found

    Quasiperiodic Solutions of the Fibre Optics Coupled Nonlinear Schr{\"o}dinger Equations

    Get PDF
    We consider travelling periodical and quasiperiodical waves in single mode fibres, with weak birefringence and under the action of cross-phase modulation. The problem is reduced to the ``1:2:1" integrable case of the two-particle quartic potential. A general approach for finding elliptic solutions is given. New solutions which are associated with two-gap Treibich-Verdier potentials are found. General quasiperiodic solutions are given in terms of two dimensional theta functions with explicit expressions for frequencies in terms of theta constants. The reduction of quasiperiodic solutions to elliptic functions is discussed.Comment: 24 page

    Gluon distributions in nucleons and pions at a low resolution scale

    Full text link
    In this paper we study the gluon distribution functions in nucleons and pions at a low resolution Q2Q^2 scale. This is an important issue since parton densities at low Q2Q^2 have always been taken as an external input which is adjusted through DGLAP evolution to fit the experimental data at higher scales. Here, in the framework of a model recently developed, it is shown that the hypothetical cloud of {\it neutral} pions surrounding nucleons and pions appears to be responsible for the characteristic valence-like gluon distributions needed at the inital low scale. As an additional result, we get the remarkable prediction that neutral and charged pions have different intrinsic sea flavor contents.Comment: final version to appear in Phys. Rev. D. Discussion on several points enlarge

    Bubble generation in a twisted and bent DNA-like model

    Get PDF
    The DNA molecule is modeled by a parabola embedded chain with long-range interactions between twisted base pair dipoles. A mechanism for bubble generation is presented and investigated in two different configurations. Using random normally distributed initial conditions to simulate thermal fluctuations, a relationship between bubble generation, twist and curvature is established. An analytical approach supports the numerical results.Comment: 7 pages, 8 figures. Accepted for Phys. Rev. E (in press

    Altered Expression Pattern of Clock Genes in a Rat Model of Depression

    Get PDF
    BACKGROUND: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation of clock gene expression in depressive patients, many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats is associated with alternations of the diurnal expression of clock genes. The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes: period genes 1 and 2 (Per1 and Per2) and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at a 4h sampling interval within 24h. We quantified expression of clock genes on brain sections in the prefrontal cortex, nucleus accumbens, pineal gland, suprachiasmatic nucleus, substantia nigra, amygdala, ventral tegmental area, subfields of the hippocampus, and the lateral habenula using in situ hybridization histochemistry. Expression of clock genes in the liver was monitored by real-time quantitative polymerase chain reaction (PCR). RESULTS: We found that the effect of CMS on clock gene expression was selective and region specific. Per1 exhibits a robust diurnal rhythm in most regions of interest, whereas Bmal1 and in particular Per2 were susceptible to CMS. CONCLUSION: The present results suggest that altered expression of investigated clock genes is likely associated with the induction of a depression-like state in the CMS model

    Food-provisioning negatively affects calf survival and female reproductive success in bottlenose dolphins

    Get PDF
    Food-provisioning of wildlife can facilitate reliable up-close encounters desirable by tourists and, consequently, tour operators. Food-provisioning can alter the natural behavior of an animal, encouraging adverse behavior (e.g. begging for food handouts), and affect the reproductive success and the viability of a population. Studies linking food-provisioning to reproductive success are limited due to the lack of long-term datasets available, especially for long-lived species such as marine mammals. In Bunbury, Western Australia, a state-licensed food-provisioning program offers fish handouts to a limited number of free-ranging bottlenose dolphins (Tursiops aduncus). Coupled with long-term historical data, this small (<200 individuals), resident dolphin population has been extensively studied for over ten years, offering an opportunity to examine the effect of food-provisioning on the reproductive success of females (ntotal = 63; nprovisioned females = 8). Female reproductive success was estimated as the number of weaned calves produced per reproductive years and calf survival at year one and three years old was investigated. The mean reproductive success of provisioned and non-provisioned females was compared using Bayes factor. We also used generalized linear models (GLMs) to examine female reproductive success in relation to the occurrence of food-provisioning, begging behavior and location (within the study area). Furthermore, we examined the influence of these variables and birth order and climatic fluctuations (e.g. El Niño Southern Oscillation) on calf survival. Bayes factor analyses (Bayes factor = 6.12) and results from the best fitting GLMs showed that female reproductive success and calf survival were negatively influenced by food-provisioning. The negative effects of food-provisioning, although only affecting a small proportion of the adult females’ population (13.2%), are of concern, especially given previous work showing that this population is declining

    Strangelet dwarfs

    Full text link
    If the surface tension of quark matter is low enough, quark matter is not self bound. At sufficiently low pressure and temperature, it will take the form of a crystal of positively charged strangelets in a neutralizing background of electrons. In this case there will exist, in addition to the usual family of strange stars, a family of low-mass large-radius objects analogous to white dwarfs, which we call "strangelet dwarfs". Using a generic parametrization of the equation of state of quark matter, we calculate the mass-radius relationship of these objects.Comment: 10 pages, LaTeX, added discussion of CFL phase and strangelet pollution, version to appear in journal. arXiv admin note: text overlap with arXiv:0808.067

    Nonlinearity-induced conformational instability and dynamics of biopolymers

    Full text link
    We propose a simple phenomenological model for describing the conformational dynamics of biopolymers via the nonlinearity-induced buckling and collapse (i.e. coiling up) instabilities. Taking into account the coupling between the internal and mechanical degrees of freedom of a semiflexible biopolymer chain, we show that self-trapped internal excitations (such as amide-I vibrations in proteins, base-pair vibrations in DNA, or polarons in proteins) may produce the buckling and collapse instabilities of an initially straight chain. These instabilities remain latent in a straight infinitely long chain, because the bending of such a chain would require an infinite energy. However, they manifest themselves as soon as we consider more realistic cases and take into account a finite length of the chain. In this case the nonlinear localized modes may act as drivers giving impetus to the conformational dynamics of biopolymers. The buckling instability is responsible, in particular, for the large-amplitude localized bending waves which accompany the nonlinear modes propagating along the chain. In the case of the collapse instability, the chain folds into a compact three-dimensional coil. The viscous damping of the aqueous environment only slows down the folding of the chain, but does not stop it even for a large damping. We find that these effects are only weakly affected by the peculiarities of the interaction potentials, and thus they should be generic for different models of semiflexible chains carrying nonlinear localized excitations.Comment: 4 pages (RevTeX) with 5 figures (EPS

    Low Q2Q^2 wave-functions of pions and kaons and their parton distribution functions

    Get PDF
    We study the low Q2Q^2 wave-functions of pions and kaons as an expansion in terms of hadron-like Fock state fluctuations. In this formalism, pion and kaon wave-functions are related one another. Consequently, the knowledge of the pion structure allows the determination of parton distributions in kaons. In addition, we show that the intrinsic (low Q2Q^2) sea of pions and kaons are different due to their different valence quark structure. Finally, we analize the feasibility of a method to extract kaon's parton distribution functions within this approach and compare with available experimental data.Comment: 13 pages, 3 postscript figures include

    Propagating Torsion in 3D-Gravity and Dynamical Mass Generation

    Full text link
    In this paper, fermions are minimally coupled to 3D-gravity where a dynamical torsion is introduced. A Kalb-Ramond field is non-minimally coupled to these fermions in a gauge-invariant way. We show that a 1-loop mass generation mechanism takes place for both the 2-form gauge field and the torsion. As for the fermions, no mass is dynamically generated: at 1-loop, there is only a mass shift proportional to the Yukawa coupling whenever the fermions have a non-vanishing tree-level mass.Comment: 13 pages, latex file, no figures, some corrections adde
    corecore