8,008 research outputs found

    Lattice stretching bistability and dynamic heterogeneity

    Get PDF
    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and an harmonic second-neighbor coupling. Under an external stretching applied t o the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provide s a homogeneous bistable (degenerate) ground state, at least within a certain part of the chain. As a result, different conformational changes occur in the chain under the external forcing. The transition regions between these conformations are described as topological solitons. With a strong second-neighbor interaction, the solitons describe the transition between the bistable ground states. However, the key point of the model is the appearance of a heterogenous structure, when the second-neighbor coupling is sufficiently weak. In this case, a part of the chain has short bonds with a single-well potential, whereas the complementary part admits strongly stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-stretching diagram for DNA and alpha-helix protein. Finally, the soliton dynamics are studied in detail.Comment: Submitted to Phys. Rev. E, 13 figure

    Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes

    Get PDF
    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing

    Quasiperiodic Solutions of the Fibre Optics Coupled Nonlinear Schr{\"o}dinger Equations

    Get PDF
    We consider travelling periodical and quasiperiodical waves in single mode fibres, with weak birefringence and under the action of cross-phase modulation. The problem is reduced to the ``1:2:1" integrable case of the two-particle quartic potential. A general approach for finding elliptic solutions is given. New solutions which are associated with two-gap Treibich-Verdier potentials are found. General quasiperiodic solutions are given in terms of two dimensional theta functions with explicit expressions for frequencies in terms of theta constants. The reduction of quasiperiodic solutions to elliptic functions is discussed.Comment: 24 page

    Stationary and moving breathers in a simplified model of curved alpha--helix proteins

    Get PDF
    The existence, stability and movability of breathers in a model for alpha-helix proteins is studied. This model basically consists a chain of dipole moments parallel to it. The existence of localized linear modes brings about that the system has a characteristic frequency, which depends on the curvature of the chain. Hard breathers are stable, while soft ones experiment subharmonic instabilities that preserve, however the localization. Moving breathers can travel across the bending point for small curvature and are reflected when it is increased. No trapping of breathers takes place.Comment: 19 pages, 11 figure

    Discovery of the spectroscopic binary nature of six southern Cepheids

    Get PDF
    We present the analysis of photometric and spectroscopic data of six bright Galactic Cepheids: GH Carinae, V419 Centauri, V898 Centauri, AD Puppis, AY Sagittarii, and ST Velorum. Based on new radial velocity data (in some cases supplemented with earlier data available in the literature), these Cepheids have been found to be members in spectroscopic binary systems. V898 Cen turned out to have one of the largest orbital radial velocity amplitude (> 40 km/s) among the known binary Cepheids. The data are insufficient to determine the orbital periods nor other orbital elements for these new spectroscopic binaries. These discoveries corroborate the statement on the high frequency of occurrence of binaries among the classical Cepheids, a fact to be taken into account when calibrating the period-luminosity relationship for Cepheids. We have also compiled all available photometric data that revealed that the pulsation period of AD Pup, the longest period Cepheid in this sample, is continuously increasing with Delta P = 0.004567 d/century, likely to be caused by stellar evolution. The wave-like pattern superimposed on the parabolic O-C graph of AD Pup may well be caused by the light-time effect in the binary system. ST Vel also pulsates with a continuously increasing period. The other four Cepheids are characterised with stable pulsation periods in the last half century.Comment: accepted by the MNRAS, 11 pages, 16 figures, 18 tables, a part of the data can be downloaded from the online version of this articl

    Nonlinearity-induced conformational instability and dynamics of biopolymers

    Full text link
    We propose a simple phenomenological model for describing the conformational dynamics of biopolymers via the nonlinearity-induced buckling and collapse (i.e. coiling up) instabilities. Taking into account the coupling between the internal and mechanical degrees of freedom of a semiflexible biopolymer chain, we show that self-trapped internal excitations (such as amide-I vibrations in proteins, base-pair vibrations in DNA, or polarons in proteins) may produce the buckling and collapse instabilities of an initially straight chain. These instabilities remain latent in a straight infinitely long chain, because the bending of such a chain would require an infinite energy. However, they manifest themselves as soon as we consider more realistic cases and take into account a finite length of the chain. In this case the nonlinear localized modes may act as drivers giving impetus to the conformational dynamics of biopolymers. The buckling instability is responsible, in particular, for the large-amplitude localized bending waves which accompany the nonlinear modes propagating along the chain. In the case of the collapse instability, the chain folds into a compact three-dimensional coil. The viscous damping of the aqueous environment only slows down the folding of the chain, but does not stop it even for a large damping. We find that these effects are only weakly affected by the peculiarities of the interaction potentials, and thus they should be generic for different models of semiflexible chains carrying nonlinear localized excitations.Comment: 4 pages (RevTeX) with 5 figures (EPS

    Linear response subordination to intermittent energy release in off-equilibrium aging dynamics

    Full text link
    The interpretation of experimental and numerical data describing off-equilibrium aging dynamics crucially depends on the connection between spontaneous and induced fluctuations. The hypothesis that linear response fluctuations are statistically subordinated to irreversible outbursts of energy, so-called quakes, leads to predictions for averages and fluctuations spectra of physical observables in reasonable agreement with experimental results [see e.g. Sibani et al., Phys. Rev. B74:224407, 2006]. Using simulational data from a simple but representative Ising model with plaquette interactions, direct statistical evidence supporting the hypothesis is presented and discussed in this work. A strict temporal correlation between quakes and intermittent magnetization fluctuations is demonstrated. The external magnetic field is shown to bias the pre-existent intermittent tails of the magnetic fluctuation distribution, with little or no effect on the Gaussian part of the latter. Its impact on energy fluctuations is shown to be negligible. Linear response is thus controlled by the quakes and inherits their temporal statistics. These findings provide a theoretical basis for analyzing intermittent linear response data from aging system in the same way as thermal energy fluctuations, which are far more difficult to measure.Comment: 9 pages, 10 figures. Text improve
    corecore