21 research outputs found

    Correction to: Sepsis increases perioperative metastases in a murine model

    No full text
    It has been highlighted that the original manuscript [1] contains a typesetting error in Fig. 1 and the Fig. 1c panel gas been inadvertently duplicated in panel Fig. 1d. This does not affect the results and conclusions of the article. The correct version of Fig. 1 is included with this Correction. The original article has been updated

    Sepsis increases perioperative metastases in a murine model

    No full text
    Abstract Background Cancer surgery can promote tumour metastases and worsen prognosis, however, the effect of perioperative complications on metastatic disease remains unclear. In this study we sought to evaluate the effect of common perioperative complications including perioperative blood loss, hypothermia, and sepsis on tumour metastases in a murine model. Methods Prior to surgery, pulmonary metastases were established by intravenous challenge of CT26LacZ colon cancer cells in BALB/c mice. Surgical stress was generated through partial hepatectomy (PH) or left nephrectomy (LN). Sepsis was induced by puncturing the cecum to express stool into the abdomen. Hemorrhagic shock was induced by removal of 30% of total blood volume (i.e. stage 3 hemorrhage) via the saphenous vein. Hypothermia was induced by removing the heating apparatus during surgery and lowering core body temperatures to 30 °C. Lung tumour burden was quantified 3 days following surgery. Results Surgically stressed mice subjected to stage 3 hemorrhage or hypothermia did not show an additional increase in lung tumour burden. In contrast, surgically stressed mice subjected to intraoperative sepsis demonstrated an additional 2-fold increase in the number of tumour metastases. Furthermore, natural killer (NK) cell function, as assessed by YAC-1 tumour cell lysis, was significantly attenuated in surgically stressed mice subjected to intraoperative sepsis. Both NK cell-mediated cytotoxic function and lung tumour burden were improved with perioperative administration of polyI:C, which is a toll-like receptor (TLR)-3 ligand. Conclusions Perioperative sepsis alone, but not hemorrhage or hypothermia, enhances the prometastatic effect of surgery in murine models of cancer. Understanding the cellular mechanisms underlying perioperative immune suppression will facilitate the development of immunomodulation strategies that can attenuate metastatic disease

    Preventing Surgery-Induced NK Cell Dysfunction Using Anti-TGF-β Immunotherapeutics

    No full text
    Natural Killer (NK) cell cytotoxicity and interferon-gamma (IFNγ) production are profoundly suppressed postoperatively. This dysfunction is associated with increased morbidity and cancer recurrence. NK activity depends on the integration of activating and inhibitory signals, which may be modulated by transforming growth factor-beta (TGF-β). We hypothesized that impaired postoperative NK cell IFNγ production is due to altered signaling pathways caused by postoperative TGF-β. NK cell receptor expression, downstream phosphorylated targets, and IFNγ production were assessed using peripheral blood mononuclear cells (PBMCs) from patients undergoing cancer surgery. Healthy NK cells were incubated in the presence of healthy/baseline/postoperative day (POD) 1 plasma and in the presence/absence of a TGF-β-blocking monoclonal antibody (mAb) or the small molecule inhibitor (smi) SB525334. Single-cell RNA sequencing (scRNA-seq) was performed on PBMCs from six patients with colorectal cancer having surgery at baseline/on POD1. Intracellular IFNγ, activating receptors (CD132, CD212, NKG2D, DNAM-1), and downstream target (STAT5, STAT4, p38 MAPK, S6) phosphorylation were significantly reduced on POD1. Furthermore, this dysfunction was phenocopied in healthy NK cells through incubation with rTGF-β1 or POD1 plasma and was prevented by the addition of anti-TGF-β immunotherapeutics (anti-TGF-β mAb or TGF-βR smi). Targeted gene analysis revealed significant decreases in S6 and FKBP12, an increase in Shp-2, and a reduction in NK metabolism-associated transcripts on POD1. pSmad2/3 was increased and pS6 was reduced in response to rTGF-β1 on POD1, changes that were prevented by anti-TGF-β immunotherapeutics. Together, these results suggest that both canonical and mTOR pathways downstream of TGF-β mediate phenotypic changes that result in postoperative NK cell dysfunction

    Perioperative influenza vaccination reduces postoperative metastatic disease by reversing surgery-induced dysfunction in natural killer cells.

    No full text
    Purpose: Surgical removal of solid primary tumors is an essential component of cancer treatment. Surgery-induced dysfunction in natural killer (NK) cells has been linked to the development of metastases in animal models and patients with cancer. We investigated the activation of NK cells using influenza vaccine in the perioperative period to eradicate micrometastatic disease. Experimental design: Both the B16lacZ and 4T1 tumor models in immunocompetent mice were used to assess the in vivo efficacy of perioperative influenza vaccine administration. In healthy human donors and cancer surgery patients, we assessed NK cell function pre- and post-influenza vaccination using both in vivo and ex vivo assays. Results: Using the TLR3 agonist poly(I:C), we showed as proof-of-principle that perioperative administration of a nonspecific innate immune stimulant can inhibit surgery-induced dysfunction in NK cells and attenuate metastases. Next, we assessed a panel of prophylactic vaccines for NK cell activation and determined that inactivated influenza vaccine was the best candidate for perioperative administration. Perioperative influenza vaccine significantly reduced tumor metastases and improved NK cytotoxicity in preclinical tumor models. Significantly, IFNα is the main cytokine mediator for the therapeutic effect of influenza vaccination. In human studies, influenza vaccine significantly enhanced NK cell activity in healthy human donors and cancer surgery patients. Conclusion: These results provide the preclinical rationale to pursue future clinical trials of perioperative NK cell activation, using vaccination in cancer surgery patients. Research into perioperative immune therapy is warranted to prevent immune dysfunction following surgery and eradicate metastatic disease

    Surgery-induced abrogation of protection conferred by AdDCT vaccination is dependent on CD3<sup>+</sup> T cells.

    No full text
    <p><b>(a)</b> CD-1 nude mice were vaccinated with 1×10<sup>7</sup> pfu AdDCT. On day 7, mice were challenged with sc B16F10lacZ tumors and then underwent surgery or no surgery. <b>(b)</b> Survival of treated B16F10lacZ tumor-bearing CD-1 nude mice are shown in Kaplan-Meier curves. Percentage of living mice is indicated. N = 7-8/group. <b>(c)</b> B6 mice were vaccinated with 1x10<sup>7</sup> pfu AdDCT and at day 7, mice underwent surgery or no surgery. At day 8, spleen CD3<sup>+</sup> T cells were isolated and transferred to naive recipient B6 mice. At day 9, recipient mice were challenged with sc B16F10lacZ tumors. <b>(d)</b> Survival of treated B16F10lacZ tumor-bearing mice are shown in Kaplan-Meier cures. Percentage of living mice is indicated. N = 7-8/group.</p
    corecore