29 research outputs found

    Epilepsy and hypertension: The possible link for sudden unexpected death in epilepsy?

    Get PDF
    Epilepsy affects about 50 million people worldwide. Sudden unexpected death in epilepsy (SUDEP) is the main cause of death in epilepsy accounting for up to 17% of all deaths in epileptic patients, and therefore remains a major public health problem. SUDEP likely arises from a combination and interaction of multiple risk factors (such as being male, drug resistance, frequent generalized tonic-clonic seizures) making risk prediction and mitigation challenging. While there is a general understanding of the physiopathology of SUDEP, mechanistic hypotheses linking risk factors with a risk of SUDEP are still lacking. Identifying cross-talk between biological systems implicated in SUDEP may facilitate the development of improved models for SUDEP risk assessment, treatment and clinical management. In this review, the aim was to explore an overlap between the pathophysiology of hypertension, cardiovascular disease and epilepsy, and discuss its implication for SUDEP. Presented herein, evidence in literature in support of a cross-talk between the renin–angiotensin system (RAS) and sympathetic nervous system, both known to be involved in the development of hypertension and cardiovascular disease, and as one of the underlying mechanisms of SUDEP. This article also provides a brief description of local RAS in brain neuroinflammation and the role of centrally acting RAS inhibitors in epileptic seizure alleviation

    Comparative Expression of Renin-Angiotensin Pathway Proteins in Visceral Versus Subcutaneous Fat

    Get PDF
    Body fat distribution contributes to obesity-related metabolic and cardiovascular disorders. Visceral fat is more detrimental than subcutaneous fat. However, the mechanisms underlying visceral fat-mediated cardiometabolic dysregulation are not completely understood. Localized increases in expression of the renin angiotensin system (RAS) in adipose tissue (AT) may be implicated. We therefore investigated mRNA and protein expression of RAS components in visceral versus subcutaneous AT using paired samples from individuals undergoing surgery (N = 20, body mass index: 45.6 ± 6.2 kg/m2, and age: 44.6 ± 9.1 years). We also examined RAS-related proteins in AT obtained from individuals on renin angiotensin aldosterone system (RAAS) targeted drugs (N = 10, body mass index: 47.2 ± 9.3 kg/m2, and age: 53.3 ± 10.1 years). Comparison of protein expression between subcutaneous and visceral AT samples showed an increase in renin (p = 0.004) and no change in angiotensinogen (p = 0.987) expression in visceral AT. Among proteins involved in angiotensin peptide generation, angiotensin converting enzyme (p = 0.02) was increased in subcutaneous AT while chymase (p = 0.001) and angiotensin converting enzyme-2 (p = 0.001) were elevated in visceral fat. Furthermore, visceral fat expression of angiotensin II type-2 receptor (p = 0.007) and angiotensin II type-1 receptor (p = 0.031) was higher, and MAS receptor (p < 0.001) was lower. Phosphorylated-p53 (p = 0.147), AT fibrosis (p = 0.138) and average adipocyte size (p = 0.846) were similar in the two depots. Nonetheless, visceral AT showed increased mRNA expression of inflammatory (TNFα, p < 0.001; IL-6, p = 0.001) and oxidative stress markers (NOX2, p = 0.038; NOX4, p < 0.001). Of note, mRNA and protein expression of RAS components did not differ between subjects taking or not taking RAAS related drugs. In summary, several RAS related proteins are differentially expressed in subcutaneous versus visceral AT. This differential expression may not alter AngII but likely increases Ang1-7 generation in visceral fat. These potential differences in active angiotensin peptides and receptor expression in the two depots suggest that localized RAS may not be involved in differences in visceral vs subcutaneous AT function in obese individuals. Our findings do not support a role for localized RAS differences in visceral fat-mediated development of cardiovascular and metabolic pathology

    Role of elastase-2, an angiotensin converting enzyme, in carotid of rats.

    No full text
    Uma atividade funcional para uma via alternativa de geração de angiotensina II, como a elastase-2 foi sugerida em estudos realizados anteriormente em nosso laboratório no leito arterial mesentérico isolado de rato. No presente estudo, caracterizamos com o uso de substratos e inibidores seletivos a presença de via alternativa de geração de Ang II, independente da ECA, em carótida de ratos. Determinamos ainda a expressão do RNAm da elastase-2 nesta preparação arterial. Em anéis isolados de carótida de ratos analisamos o efeito vasoconstritor dos peptídeos Ang II, Ang I, TDP, [Pro11-D-Ala12]-Ang I (um substrato resistente a ECA) na ausência e presença de inibidores de proteases. Ang II e seus precursores produziram efeito vasoconstritor dependente da concentração em carótidas de ratos, de forma sensível ao losartan (1 M). Na presença de captopril (10 M) a resposta vasoconstritora produzida pela Ang I foi inibida, mas a resposta contrátil induzida pelo TDP e [Pro11-D-Ala12]-Ang I não foi alterada. Na presença de quimostatina (100 M) o efeito produzido pelo TDP e [Pro11-D-Ala12]-Ang I foi abolido enquanto que a curva cumulativa de Ang I foi significativamente deslocada para a direita. Inibidor Ac-AAPL-CK (seletivo para elastase-2) aboliu completamente a resposta contrátil induzida pelo PDA e não alterou o efeito vasoconstritor da Ang II. Na presença de captopril e quimostatina a resposta vasoconstritora dos peptídeos Ang I, TDP e [Pro11-D-Ala12]-Ang I foram inibidas, enquanto a resposta contrátil da Ang II não foi alterada em artéria carótida. A presença de RNAm da elastase-2 na carótida, juntamente com os dados funcionais apresentados aqui sugerem a participação desta enzima na via alternativa de geração de Ang II em carótidas de ratos. Embora a formação de Ang II a partir Ang I seja descrita como essencialmente dependente da ECA, nossos resultados sugerem a existência de vias alternativas de geração de Ang II sensível a quimostatina e Ac-AAPL-CK em artéria carótida de ratos. Muito provavelmente a elastase-2 seja a enzima responsável pela geração de Ang II nessa preparação.We have recently described a chymostatin-sensitive elastase-2 as the major angiotensin (Ang) II-forming enzyme in the perfusate of rat mesenteric arterial bed (MAB). In the present study we investigated the role of this enzyme in generating Ang II in the isolated rat carotid artery rings by analyzing the vasoconstrictor effect of Ang II, Ang I, tetradecapetide renin-substrate (TDP), [Pro11-D-Ala12]-Ang I (an ACE-resistant substrate) in the absence and presence of proteases inhibitors. Ang II and its precursors produced a dose-dependent vasoconstrictor effect in vascular preparation that was blocked by losartan (1 M). In carotid rings, captopril (10M) abolished the responses induced by Ang I but did not affect those induced by TDP and [Pro11-D-Ala12]-Ang I. In the presence of chymostatin (100 M) alone, the effects induced by [Pro11-D-Ala12]-Ang I and TDP were abolished while the concentration-response curve to Ang I was shifted to the right. Ac-AAPL-CK (selective elastase-2 inhibitor) inhibited the responses induced by [Pro11-D-Ala12]-Ang I but did not affect Ang II-induced effects. In the presence of captopril and chymostatin, the vasoconstrictor effects of Ang I, TDP, and PDA were completely blocked while those induced by Ang II were not affected in rat artery carotid. Although Ang II formation from Ang I is essentially dependent on ACE in carotid artery, our results suggest the existence of an alternative chymostatin-sensitive pathway in rat arteries, most probably involving elastase-2

    Role of elastase-2, an angiotensin converting enzyme, in carotid of rats.

    No full text
    Uma atividade funcional para uma via alternativa de geração de angiotensina II, como a elastase-2 foi sugerida em estudos realizados anteriormente em nosso laboratório no leito arterial mesentérico isolado de rato. No presente estudo, caracterizamos com o uso de substratos e inibidores seletivos a presença de via alternativa de geração de Ang II, independente da ECA, em carótida de ratos. Determinamos ainda a expressão do RNAm da elastase-2 nesta preparação arterial. Em anéis isolados de carótida de ratos analisamos o efeito vasoconstritor dos peptídeos Ang II, Ang I, TDP, [Pro11-D-Ala12]-Ang I (um substrato resistente a ECA) na ausência e presença de inibidores de proteases. Ang II e seus precursores produziram efeito vasoconstritor dependente da concentração em carótidas de ratos, de forma sensível ao losartan (1 M). Na presença de captopril (10 M) a resposta vasoconstritora produzida pela Ang I foi inibida, mas a resposta contrátil induzida pelo TDP e [Pro11-D-Ala12]-Ang I não foi alterada. Na presença de quimostatina (100 M) o efeito produzido pelo TDP e [Pro11-D-Ala12]-Ang I foi abolido enquanto que a curva cumulativa de Ang I foi significativamente deslocada para a direita. Inibidor Ac-AAPL-CK (seletivo para elastase-2) aboliu completamente a resposta contrátil induzida pelo PDA e não alterou o efeito vasoconstritor da Ang II. Na presença de captopril e quimostatina a resposta vasoconstritora dos peptídeos Ang I, TDP e [Pro11-D-Ala12]-Ang I foram inibidas, enquanto a resposta contrátil da Ang II não foi alterada em artéria carótida. A presença de RNAm da elastase-2 na carótida, juntamente com os dados funcionais apresentados aqui sugerem a participação desta enzima na via alternativa de geração de Ang II em carótidas de ratos. Embora a formação de Ang II a partir Ang I seja descrita como essencialmente dependente da ECA, nossos resultados sugerem a existência de vias alternativas de geração de Ang II sensível a quimostatina e Ac-AAPL-CK em artéria carótida de ratos. Muito provavelmente a elastase-2 seja a enzima responsável pela geração de Ang II nessa preparação.We have recently described a chymostatin-sensitive elastase-2 as the major angiotensin (Ang) II-forming enzyme in the perfusate of rat mesenteric arterial bed (MAB). In the present study we investigated the role of this enzyme in generating Ang II in the isolated rat carotid artery rings by analyzing the vasoconstrictor effect of Ang II, Ang I, tetradecapetide renin-substrate (TDP), [Pro11-D-Ala12]-Ang I (an ACE-resistant substrate) in the absence and presence of proteases inhibitors. Ang II and its precursors produced a dose-dependent vasoconstrictor effect in vascular preparation that was blocked by losartan (1 M). In carotid rings, captopril (10M) abolished the responses induced by Ang I but did not affect those induced by TDP and [Pro11-D-Ala12]-Ang I. In the presence of chymostatin (100 M) alone, the effects induced by [Pro11-D-Ala12]-Ang I and TDP were abolished while the concentration-response curve to Ang I was shifted to the right. Ac-AAPL-CK (selective elastase-2 inhibitor) inhibited the responses induced by [Pro11-D-Ala12]-Ang I but did not affect Ang II-induced effects. In the presence of captopril and chymostatin, the vasoconstrictor effects of Ang I, TDP, and PDA were completely blocked while those induced by Ang II were not affected in rat artery carotid. Although Ang II formation from Ang I is essentially dependent on ACE in carotid artery, our results suggest the existence of an alternative chymostatin-sensitive pathway in rat arteries, most probably involving elastase-2

    Angiotensin-converting enzyme inhibition augments the expression of rat elastase-2, an angiotensin II-forming enzyme

    No full text
    Becari C, Teixeira FR, Oliveira EB, Salgado MC. Angiotensin-converting enzyme inhibition augments the expression of rat elastase- 2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol 301: H565-H570, 2011. First published May 20, 2011; doi:10.1152/ajpheart.00534.2010.-Mounting evidence suggest that tissue levels of angiotensin (ANG) II are maintained in animals submitted to chronic angiotensin-converting enzyme (ACE) inhibitor treatment. We examined the expression levels of transcripts for elastase-2, a chymostatin-sensitive serine protease identified as the alternative pathway for ANG II generation from ANG I in the rat vascular tissue and the relative role of ACE-dependent and -independent pathways in generating ANG II in the rat isolated carotid artery rings of spontaneously hypertensive rats (SHR) and Wistar normotensive rats (WNR) treated with enalapril for 7 days. Enalapril treatment decreased blood pressure of SHR only and resulted in significantly more elastase-2 mRNA expression in carotid artery of both enalapril-treated WNR and SHR. Captopril induced a comparable rightward shift of concentration-response curves to ANG I in vehicle and enalapril-treated rats, although this effect was of lesser magnitude in SHR group. Chymostatin induced a rightward shift of the dose response to ANG I in vehicle-treated and a decrease in maximal effect of 22% in enalapril-treated WNR group. Maximal response induced by ANG I was remarkably reduced by chymostatin in enalapril-treated SHR carotid artery (by 80%) compared with controls (by 23%). Our data show that chronic ACE inhibition was associated with augmented functional role of non-ACE pathway in generating ANG II and increased elastase-2 gene expression, suggesting that this protease may contribute as an alternative pathway for ANG II generation when ACE is inhibited in the rat vascular tissue.FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao PauloCNPq Conselho Nacional de Pesquisas Cientificas e Tecnologica

    A multilocus genetic risk score is associated with arterial stiffness in hypertensive patients : The CARE NORTH study

    No full text
    Introduction: Arterial stiffness is recognized as an intermediate phenotype and predictor of cardiovascular disease. Arterial stiffness is complex in origin with contributions from lifestyle and genetic factors. However, the association between single nucleotide polymorphisms (SNPs) and arterial stiffness remains unclear. Objective: The aim is to assess whether a multilocus genetic risk score (GRS), composed of selected SNPs linked to cardiovascular traits and outcomes, is associated with arterial stiffness in patients with hypertension. Design and methods: This study included 730 participants derived from the CARE NORTH study. The arterial stiffness was evaluated by carotid-femoral pulse wave velocity (cfPWV). An adjusted linear regression was used to evaluate the association between cfPWV and each individual SNP using multiple genetic models. The association between a constructed GRS and cfPWV was tested in an unadjusted and adjusted model. Results: We selected 13 SNPs found to be associated with cfPWV (P<.05): 6 SNPs in additive, 4 SNPs in recessive and 3 SNPs in dominant mode of inheritance. The GRS based on these SNPs was positively associated with cfPWV both in unadjusted and adjusted models (β = 0.2m/s, 95% CI 0.11-0.29, P - 7.6 × 10-6 and β = 0.22 m/s, 95% CI 0.15-0.28, P=1.4 × 10-10, respectively). The GRS explained an additional 3.6% cfPWV variance above clinical covariates. Conclusion: We demonstrate that the GRS composed of 13 SNPs related to cardiovascular phenotypes is associated with an increased arterial stiffness in hypertensive patients. Our findings may help to clarify genetic basis of arterial stiffening and provide insight into mechanisms underlying this phenotype

    Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy

    No full text
    The RAS (renin angiotensin system) is classically involved in BP (blood pressure) regulation and water electrolyte balance, and in the central nervous system it has been mostly associated with homoeostatic processes, such as thirst, hormone secretion and thermoregulation. Epilepsies are chronic neurological disorders characterized by recurrent epileptic seizures that affect 1-3% of the world`s population, and the most commonly used anticonvulsants are described to be effective in approx. 70% of the population with this neurological alteration. Using a rat model of epilepsy, we found that components of the RAS, namely ACE (angiotensin-converting enzyme) and the AT(1) receptor (angiotensin II type I receptor) are up-regulated in the brain (2.6- and 8.2-fold respectively) following repetitive seizures. Subsequently, epileptic animals were treated with clinically used doses of enalapril, an ACE inhibitor, and losartan, an AT(1) receptor blocker, leading to a significant decrease in seizure severities. These results suggest that centrally acting drugs that target the RAS deserve further investigation as possible anticonvulsant agents and may represent an additional strategy in the management of epileptic patients.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[02/09406-5]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[06/61810-6]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[07/50261-4]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[FAPESP-Cinapce 05/56447-7]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Pyridostigmine Restores Cardiac Autonomic Balance after Small Myocardial Infarction in Mice

    No full text
    <div><p>The effect of pyridostigmine (PYR) - an acetylcholinesterase inhibitor - on hemodynamics and cardiac autonomic control, was never studied in conscious myocardial infarcted mice. Telemetry transmitters were implanted into the carotid artery under isoflurane anesthesia. Seven to ten days after recovery from the surgery, basal arterial pressure and heart rate were recorded, while parasympathetic and sympathetic tone (ΔHR) was evaluated by means of methyl atropine and propranolol. After the basal hemodynamic recording the mice were subjected to left coronary artery ligation for producing myocardial infarction (MI), or sham operation, and implantation of minipumps filled with PYR or saline. Separate groups of anesthetized (isoflurane) mice previously (4 weeks) subjected to MI, or sham coronary artery ligation, were submitted to cardiac function examination. The mice exhibited an infarct length of approximately 12%, no change in arterial pressure and increased heart rate only in the 1st week after MI. Vagal tone decreased in the 1<sup>st</sup> week, while the sympathetic tone was increased in the 1<sup>st</sup> and 4<sup>th</sup> week after MI. PYR prevented the increase in heart rate but did not affect the arterial pressure. Moreover, PYR prevented the increase in sympathetic tone throughout the 4 weeks. Concerning the parasympathetic tone, PYR not only impaired its attenuation in the 1<sup>st</sup> week, but enhanced it in the 4<sup>th</sup> week. MI decreased ejection fraction and increased diastolic and systolic volume. Therefore, the pharmacological increase of peripheral acetylcholine availability by means of PYR prevented tachycardia, increased parasympathetic and decreased sympathetic tone after MI in mice.</p></div
    corecore