57 research outputs found

    Intensive language training enhances brain plasticity in chronic aphasia

    Get PDF
    BACKGROUND: Focal clusters of slow wave activity in the delta frequency range (1–4 Hz), as measured by magnetencephalography (MEG), are usually located in the vicinity of structural damage in the brain. Such oscillations are usually considered pathological and indicative of areas incapable of normal functioning owing to deafferentation from relevant input sources. In the present study we investigated the change in Delta Dipole Density in 28 patients with chronic aphasia (>12 months post onset) following cerebrovascular stroke of the left hemisphere before and after intensive speech and language therapy (3 hours/day over 2 weeks). RESULTS: Neuropsychologically assessed language functions improved significantly after training. Perilesional delta activity decreased after therapy in 16 of the 28 patients, while an increase was evident in 12 patients. The magnitude of change of delta activity in these areas correlated with the amount of change in language functions as measured by standardized language tests. CONCLUSIONS: These results emphasize the significance of perilesional areas in the rehabilitation of aphasia even years after the stroke, and might reflect reorganisation of the language network that provides the basis for improved language functions after intensive training

    Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Slow waves in the delta (0.5–4 Hz) frequency range are indications of normal activity in sleep. In neurological disorders, focal electric and magnetic slow wave activity is generated in the vicinity of structural brain lesions. Initial studies, including our own, suggest that the distribution of the focal concentration of generators of slow waves (dipole density in the delta frequency band) also distinguishes patients with psychiatric disorders such as schizophrenia, affective disorders, and posttraumatic stress disorder.</p> <p>Methods</p> <p>The present study examined the distribution of focal slow wave activity (ASWA: abnormal slow wave activity) in116 healthy subjects, 76 inpatients with schizophrenic or schizoaffective diagnoses and 42 inpatients with affective (ICD-10: F3) or neurotic/reactive (F4) diagnoses using a newly refined measure of dipole density. Based on 5-min resting magnetoencephalogram (MEG), sources of activity in the 1–4 Hz frequency band were determined by equivalent dipole fitting in anatomically defined cortical regions.</p> <p>Results</p> <p>Compared to healthy subjects the schizophrenia sample was characterized by significantly more intense slow wave activity, with maxima in frontal and central areas. In contrast, affective disorder patients exhibited less slow wave generators mainly in frontal and central regions when compared to healthy subjects and schizophrenia patients. In both samples, frontal ASWA were related to affective symptoms.</p> <p>Conclusion</p> <p>In schizophrenic patients, the regions of ASWA correspond to those identified for gray matter loss. This suggests that ASWA might be evaluated as a measure of altered neuronal network architecture and communication, which may mediate psychopathological signs.</p

    Altered oscillatory brain dynamics after repeated traumatic stress

    Get PDF
    Kolassa I-T, Wienbruch C, Neuner F, et al. Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry. 2007;7(1): 56.BACKGROUND: Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. METHODS: Using magnetoencephalographic (MEG-based) source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD) in comparison to 97 controls. RESULTS: PTSD patients showed elevated production of focally generated slow waves (1-4 Hz), particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. CONCLUSION: The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala

    The influence of methylphenidate on the power spectrum of ADHD children – an MEG study

    Get PDF
    BACKGROUND: The present study was dedicated to investigate the influence of Methylphenidate (MPH) on cortical processing of children who were diagnosed with different subtypes of Attention Deficit Hyperactivity Disorder (ADHD). As all of the previous studies investigating power differences in different frequency bands have been using EEG, mostly with a relatively small number of electrodes our aim was to obtain new aspects using high density magnetoencephalography (MEG). METHODS: 35 children (6 female, 29 male) participated in this study. Mean age was 11.7 years (± 1.92 years). 17 children were diagnosed of having an Attention-Deficit/Hyperactivity Disorder of the combined type (ADHDcom, DSM IV code 314.01); the other 18 were diagnosed for ADHD of the predominantly inattentive type (ADHDin, DSM IV code 314.0). We measured the MEG during a 5 minute resting period with a 148-channel magnetometer system (MAGNESℱ 2500 WH, 4D Neuroimaging, San Diego, USA). Power values were averaged for 5 bands: Delta (D, 1.5–3.5 Hz), Theta (T, 3.5–7.5 Hz), Alpha (A, 7.5–12.5 Hz), Beta (B, 12.5–25 Hz) and Global (GL, 1.5–25 Hz).). Additionally, attention was measured behaviourally using the D2 test of attention with and without medication. RESULTS: The global power of the frequency band from 1.5 to 25 Hz increased with MPH. Relative Theta was found to be higher in the left hemisphere after administration of MPH than before. A positive correlation was found between D2 test improvement and MPH-induced power changes in the Theta band over the left frontal region. A linear regression was computed and confirmed that the larger the improvement in D2 test performance, the larger the increase in Theta after MPH application. CONCLUSION: Main effects induced by medication were found in frontal regions. Theta band activity increased over the left hemisphere after MPH application. This finding contradicts EEG results of several groups who found lower levels of Theta power after MPH application. As relative Theta correlates with D2 test improvement we conclude that MEG provide complementary and therefore important new insights to ADHD

    Word Processing differences between dyslexic and control children

    Get PDF
    BACKGROUND: The aim of this study was to investigate brain responses triggered by different wordclasses in dyslexic and control children. The majority of dyslexic children have difficulties to phonologically assemble a word from sublexical parts following grapheme-to-phoneme correspondences. Therefore, we hypothesised that dyslexic children should mainly differ from controls processing low frequent words that are unfamiliar to the reader. METHODS: We presented different wordclasses (high and low frequent words, pseudowords) in a rapid serial visual word (RSVP) design and performed wavelet analysis on the evoked activity. RESULTS: Dyslexic children had lower evoked power amplitudes and a higher spectral frequency for low frequent words compared to control children. No group differences were found for high frequent words and pseudowords. Control children had higher evoked power amplitudes and a lower spectral frequency for low frequent words compared to high frequent words and pseudowords. This pattern was not present in the dyslexic group. CONCLUSION: Dyslexic children differed from control children only in their brain responses to low frequent words while showing no modulated brain activity in response to the three word types. This might support the hypothesis that dyslexic children are selectively impaired reading words that require sublexical processing. However, the lacking differences between word types raise the question if dyslexic children were able to process the words presented in rapid serial fashion in an adequate way. Therefore the present results should only be interpreted as evidence for a specific sublexical processing deficit with caution

    Adaptation of cortical activity to sustained pressure stimulation on the fingertip

    Get PDF
    Background Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents. Methods We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation. Results Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation. Conclusion These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.open

    Abnormal slow wave mapping (ASWAM) : a tool for the investigation of abnormal slow wave activity in the human brain

    No full text
    Slow waves in the delta and theta frequency range, normal signs of deactivated networks in sleep stages, are considered 'abnormal' when prominent in the waking state and when generated in circumscribed brain areas. Structural cortical lesions, e.g. related to stroke, tumors, or scars, generate focal electric and magnetic slow wave activity in the penumbra. Focal concentrations of slow wave activity exceeding those of healthy subjects have also been found in individuals suffering from psychiatric disorders without obvious structural brain damage. Hence, identification and mapping of abnormal slow wave activity might contribute to the investigation of cortical indications of psychopathology. Here I propose a method for abnormal slow wave mapping (ASWAM), based on a 5 min resting magnetoencephalogramm (MEG) and equivalent current dipole fitting to sources in the 1-4 Hz frequency band (delta) in anatomically defined cortical regions. The method was tested in a sample of 116 healthy subjects (59 males), with the aim to provide a basis for later comparison with patient samples. As to be expected, delta dipole density was low in healthy subjects. However, its distribution differed between genders with fronto-central>posterior dipole density in male and posterior dominance in female participants, which was not significantly related to either age or head size. Results suggest that this method allows the identification of ASWA, so that comparison against Z-scores from a larger normal control group might assist diagnostic purposes in patient groups. As specific distributions seem to reflect differences between genders, this should be considered also in the analysis of patient samples

    A neuronal network model for simulating the effects of repetitive transcranial magnetic stimulation on local field potential power spectra

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) holds promise as a non-invasive therapy for the treatment of neurological disorders such as depression, schizophrenia, tinnitus, and epilepsy. Complex interdependencies between stimulus duration, frequency and intensity obscure the exact effects of rTMS stimulation on neural activity in the cortex, making evaluation of and comparison between rTMS studies difficult. To explain the influence of rTMS on neural activity (e.g. in the motor cortex), we use a neuronal network model. The results demonstrate that the model adequately explains experimentally observed short term effects of rTMS on the band power in common frequency bands used in electroencephalography (EEG). We show that the equivalent local field potential (eLFP) band power depends on stimulation intensity rather than on stimulation frequency. Additionally, our model resolves contradictions in experiments

    Error related fields: localizing the magnetic equivalent of the ERN

    No full text
    Introduction:Research in the field of error processing and error related brain activity has a long history in the field of neuropsychology. It has been found in numerous EEG studies, that a typical brain potential arises following an erroneous response. This error related negativity (ERN) and the accompanying positivity (Pe) are thought to be related to error monitoring and feedback. This is crucial for the detection of errors and correction of actions in the framework of organization of complex behaviors and high-level goals. Yet so far, only a single published study investigated the magnetoencephalographic equivalent to the ERN (mERN) by means of single dipole modeling. This study as well as previous EEG works suggests the major source of the ERN to be located in the anterior cingulate cortex (ACC).Here, we implemented a computerized version of the paper-and-pencil d2-test, to measure the error related field in the MEG and to localize the generator of the ERN using a distributed source model.Methods:13 (5 male/ 8 female) student volunteers participated in this study. We measured the MEG during a 15-minute stimulation period with a 148-channel magnetometer system (MAGNES 2500 WH, 4D Neuroimaging, San Diego, USA). The stimulation consisted of the presentation of the d2-test stimuli and the participants had to indicate via button press whether the stimulus was a d accompanied by two marks or not. Correct and incorrect button presses were recorded. 4 Second snippets around the triggers were extracted and analyzed. Raw data was 1 Hz high pass filtered and trials containing artifacts were excluded from analysis. Trial number in the two conditions was equalized, in order to assure equal signal-to-noise ratio.After averaging the single trials, a nonparametric permutation test was used to identify clusters of activation in time and sensor space. Subsequently, time-windows of significant effects found in the ERF analysis were modeled in source space using a linearly constrained minimum variance (lcmv) beamformer. Statistical differences on the source level were confirmed using a dependent samples t-test. All analysis steps were performed using Fieldtrip (http://www.ru.nl/neuroimaging/fieldtrip/).Results:Cluster analysis revealed a parietal cluster of activation between 80-160 ms after motor response, where the incorrect responses elicited significantly larger field amplitude than the correct responses (
    • 

    corecore