31 research outputs found
ATPase activity of the MsbA lipid flippase of Escherichia coli
Escherichia coli MsbA, the proposed inner membrane lipid flippase, is an essential ATP-binding cassette transporter protein with homology to mammalian multidrug resistance proteins. Depletion or loss of function of MsbA results in the accumulation of lipopolysaccharide and phospholipids in the inner membrane of E. coli. MsbA modified with an N-terminal hexahistidine tag was overexpressed, solubilized with a nonionic detergent, and purified by nickel affinity chromatography to ∼95% purity. The ATPase activity of the purified protein was stimulated by phospholipids. When reconstituted into liposomes prepared from E. coli phospholipids, MsbA displayed an apparent Km of 878 μM and a Vmax of 37 nmol/min/mg for ATP hydrolysis in the presence of 10 mM Mg2+. Preincubation of MsbA-containing liposomes with 3-deoxy-D-mannooctulosonic acid (Kdo)2-lipid A increased the ATPase activity 4-5-fold, with half-maximal stimulation seen at 21 μM Kdo2-lipid A. Addition of Kdo2-lipid A increased the Vmax to 154 nmol/min/mg and decreased the Km to 379 μM. Stimulation was only seen with hexaacylated lipid A species and not with precursors, such as diacylated lipid X or tetraacylated lipid IVA. MsbA containing the A270T substitution, which renders cells temperature-sensitive for growth and lipid export, displayed ATPase activity similar to that of the wild type protein at 30°C but was significantly reduced at 42°C. These results provide the first in vitro evidence that MsbA is a lipid-activated ATPase and that hexaacylated lipid A is an especially potent activator
Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant
Escherichia coli yaeT encodes an essential, conserved outer membrane (OM) protein that is an ortholog of Neisseria meningitidis Omp85. Conflicting data with TV. meningitidis indicate that Omp85 functions either in assembly of OM proteins or in export of OM lipids. The role of YaeT in E. coli was investigated with a new temperature-sensitive mutant harboring nine amino acid substitutions. The mutant stops growing after 60 min at 44 °C. After 30 min at 44 °C, incorporation of [35S]methionine into newly synthesized OM proteins is selectively inhibited. Synthesis and export of OM phospholipids and lipopolysaccharide are not impaired. OM protein levels are low, even at 30 °C, and the buoyant density of the OM is correspondingly lower. By Western blotting, we show that levels of the major OM protein OmpA are lower in the mutant in whole cells, membranes, and the growth medium. SecA functions as a multicopy suppressor of the temperature-sensitive phenotype and partially restores OM proteins. Our data are consistent with a critical role for YaeT in OM protein assembly in E. coli. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc
Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: Structural characterization and transfer to lipid A in the periplasm
Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-L-arabinose units (L-Ara4N) to lipid A. We now report the purification of this lipid from a pss- pmrAC mutant of E. coli and assign its structure as undecaprenyl phosphate-α-L-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H]- at m/z 977.5, consistent with undecaprenyl phosphate-α-L-Ara4N (Mr = 978.41). 31P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the L-Ara4N unit. One- and two-dimensional 1H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IVA to lipid IIA, which is substituted with a single L-Ara4N moiety. The identification of undecaprenyl phosphate-α -L-Ara4N implies that L-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance
Periplasmic Cleavage and Modification of the 1-Phosphate Group of Helicobacter Pylori Lipid A
Pathogenic bacteria modify the lipid A portion of their lipopolysaccharide to help evade the host innate immune response. Modification of the negatively charged phosphate groups of lipid A aids in resistance to cationic antimicrobial peptides targeting the bacterial cell surface. The lipid A of Helicobacter pylori contains a phosphoethanolamine (pEtN) unit directly linked to the 1-position of the disaccharide backbone. This is in contrast to the pEtN units found in other pathogenic Gram-negative bacteria, which are attached to the lipid A phosphate group to form a pyrophosphate linkage. This study describes two enzymes involved in the periplasmic modification of the 1-phosphate group of H. pylori lipid A. By using an in vitro assay system, we demonstrate the presence of lipid A 1-phosphatase activity in membranes of H. pylori. In an attempt to identify genes encoding possible lipid A phosphatases, we cloned four putative orthologs of Escherichia coli pgpB, the phosphatidylglycerol-phosphate phosphatase, from H. pylori 26695. One of these orthologs, Hp0021, is the structural gene for the lipid A 1-phosphatase and is required for removal of the 1-phosphate group from mature lipid A in an in vitro assay system. Heterologous expression of Hp0021 in E. coli resulted in the highly selective removal of the 1-phosphate group from E. coli lipid A, as demonstrated by mass spectrometry. We also identified the structural gene for the H. pylori lipid A pEtN transferase (Hp0022). Mass spectrometric analysis of the lipid A isolated from E. coli expressing Hp0021 and Hp0022 shows the addition of a single pEtN group at the 1-position, confirming that Hp0022 is responsible for the addition of a pEtN unit at the 1-position in H. pylori lipid A. In summary, we demonstrate that modification of the 1-phosphate group of H. pylori lipid A requires two enzymatic steps
Resistance to the Antimicrobial Peptide Polymyxin Requires Myristoylation of Escherichia Coli and Salmonella Typhimurium Lipid A
Attachment of positively charged, amine-containing residues such as 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine (pEtN) to Escherichia coli and Salmonella typhimurium lipid A is required for resistance to the cationic antimicrobial peptide, polymyxin. In an attempt to discover additional lipid A modifications important for polymyxin resistance, we generated polymyxin-sensitive mutants of an E. coli pmrAC strain, WD101. A subset of polymyxin-sensitive mutants produced a lipid A that lacked both the 3′-acyloxyacyl-linked myristate (C14) and L-Ara4N, even though the necessary enzymatic machinery required to synthesize L-Ara4N-modified lipid A was present. Inactivation of lpxM in both E. coli and S. typhimurium resulted in the loss of L-Ara4N addition, as well as, increased sensitivity to polymyxin. However, decoration of the lipid A phosphate groups with pEtN residues was not effected in lpxM mutants. In summary, we demonstrate that attachment of L-Ara4N to the phosphate groups of lipid A and the subsequent resistance to polymyxin is dependent upon the presence of the secondary linked myristoyl group
Species-Specific and Inhibitor-Dependent Conformations of LpxC: Implications for Antibiotic Design
LpxC is an essential enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria. Several promising antimicrobial lead compounds targeting LpxC have been reported, though they typically display a large variation in potency against different Gram-negative pathogens. We report that inhibitors with a diacetylene scaffold effectively overcome the resistance caused by sequence variation in the LpxC substrate-binding passage. Compound binding is captured in complex with representative LpxC orthologs, and structural analysis reveals large conformational differences that mostly reflect inherent molecular features of distinct LpxC orthologs, whereas ligand-induced structural adaptations occur at a smaller scale. These observations highlight the need for a molecular understanding of inherent structural features and conformational plasticity of LpxC enzymes for optimizing LpxC inhibitors as broad-spectrum antibiotics against Gram-negative infections
Stochastic Behavior of Atrial and Ventricular Intrinsic Cardiac Neuronsan Outer Membrane Enzyme Encoded by Salmonella Typhimurium lpxr That Removes the 3′-Acyloxyacyl Moiety of Lipid A
The Salmonella and related bacteria modify the structure of the lipid A portion of their lipopolysaccharide in response to environmental stimuli. Some lipid A modifications are required for virulence and resistance to cationic antimicrobial peptides. We now demonstrate that membranes of Salmonella typhimurium contain a novel hydrolase that removes the 3′-acyloxyacyl residue of lipid A in the presence of 5 mM Ca2+. We have identified the gene encoding the S. typhimurium lipid A 3′-O-deacylase, designated lpxR, by screening an ordered S. typhimurium genomic DNA library, harbored in Escherichia coli K-12, for expression of Ca2+-dependent 3′-O-deacylase activity in membranes. LpxR is synthesized with an N-terminal type I signal peptide and is localized to the outer membrane. Mass spectrometry was used to confirm the position of lipid A deacylation in vitro and the release of the intact 3′-acyloxyacyl group. Heterologous expression of lpxR in the E. coli K-12 W3110, which lacks lpxR, resulted in production of significant amounts of 3′-O-deacylated lipid A in growing cultures. Orthologues of LpxR are present in the genomes of E. coli 0157:H7, Yersinia enterocolitica, Helicobacter pylori, and Vibrio cholerae. The function of LpxR is unknown, but it could play a role in pathogenesis because it might modulate the cytokine response of an infected animal