1,725 research outputs found

    The Current Ability to Test Theories of Gravity with Black Hole Shadows

    Get PDF
    Our Galactic Center, Sagittarius A* (Sgr A*), is believed to harbour a supermassive black hole (BH), as suggested by observations tracking individual orbiting stars. Upcoming sub-millimetre very-long-baseline-interferometry (VLBI) images of Sgr A* carried out by the Event-Horizon-Telescope Collaboration (EHTC) are expected to provide critical evidence for the existence of this supermassive BH. We assess our present ability to use EHTC images to determine if they correspond to a Kerr BH as predicted by Einstein's theory of general relativity (GR) or to a BH in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical (GRMHD) simulations and use general-relativistic radiative transfer (GRRT) calculations to generate synthetic shadow images of a magnetised accretion flow onto a Kerr BH. In addition, and for the first time, we perform GRMHD simulations and GRRT calculations for a dilaton BH, which we take as a representative solution of an alternative theory of gravity. Adopting the VLBI configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between BHs from different theories of gravity, thus highlighting that great caution is needed when interpreting BH images as tests of GR.Comment: Published in Nature Astronomy on 16.04.18 (including supplementary information); simulations at https://blackholecam.org/telling_bhs_apart

    How to tell an accreting boson star from a black hole

    Get PDF
    The capability of the Event Horizon Telescope (EHT) to image the nearest supermassive black hole candidates at horizon-scale resolutions offers a novel means to study gravity in its strongest regimes and to test different models for these objects. Here, we study the observational appearance at 230 GHz of a surfaceless black hole mimicker, namely a non-rotating boson star, in a scenario consistent with the properties of the accretion flow onto Sgr A*. To this end, we perform general relativistic magnetohydrodynamic simulations followed by general relativistic radiative transfer calculations in the boson star space-time. Synthetic reconstructed images considering realistic astronomical observing conditions show that, despite qualitative similarities, the differences in the appearance of a black hole -- either rotating or not -- and a boson star of the type considered here are large enough to be detectable. These differences arise from dynamical effects directly related to the absence of an event horizon, in particular, the accumulation of matter in the form of a small torus or a spheroidal cloud in the interior of the boson star, and the absence of an evacuated high-magnetization funnel in the polar regions. The mechanism behind these effects is general enough to apply to other horizonless and surfaceless black hole mimickers, strengthening confidence in the ability of the EHT to identify such objects via radio observations.Comment: 16 pages, 12 figures. Published in MNRAS. Adding more information in the form of appendices, and a new simulation of a different boson star model. The conclusions do not chang

    Classification of the LHC BLM Ionization Chamber

    Get PDF
    The LHC beam loss monitoring (BLM) system must prevent the super conducting magnets from quenching and protect the machine components from damage. The main monitor type is an ionization chamber. About 4000 of them will be installed around the ring. The lost beam particles initiate hadronic showers through the magnets and other machine components. These shower particles are measured by the monitors installed on the outside of the accelerator equipment. For the calibration of the BLM system the signal response of the ionization chamber is simulated in GEANT4 for all relevant particle types and energies (keV to TeV range). For validation, the simulations are compared to measurements using protons, neutrons, photons and mixed radiation fields at various energies and intensities. This paper will focus on the signal response of the ionization chamber to various particle types and energies including space charge effects at high ionization densities

    Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction

    Full text link
    We derive Keplerian-type parametrization for the solution of post-Newtonian (PN) accurate conservative dynamics of spinning compact binaries moving in eccentric orbits. The PN accurate dynamics that we consider consists of the third post-Newtonian accurate conservative orbital dynamics influenced by the leading order spin effects, namely the leading order spin-orbit interactions. The orbital elements of the representation are explicitly given in terms of the conserved orbital energy, angular momentum and a quantity that characterizes the leading order spin-orbit interactions in Arnowitt, Deser, and Misner-type coordinates. Our parametric solution is applicable in the following two distinct cases: (i) the binary consists of equal mass compact objects, having two arbitrary spins, and (ii) the binary consists of compact objects of arbitrary mass, where only one of them is spinning with an arbitrary spin. As an application of our parametrization, we present gravitational wave polarizations, whose amplitudes are restricted to the leading quadrupolar order, suitable to describe gravitational radiation from spinning compact binaries moving in eccentric orbits. The present parametrization will be required to construct `ready to use' reference templates for gravitational waves from spinning compact binaries in inspiralling eccentric orbits. Our parametric solution for the post-Newtonian accurate conservative dynamics of spinning compact binaries clearly indicates, for the cases considered, the absence of chaos in these systems. Finally, we note that our parametrization provides the first step in deriving a fully second post-Newtonian accurate `timing formula', that may be useful for the radio observations of relativistic binary pulsars like J0737-3039.Comment: 18 pages, accepted by Phys. Rev.

    Creating an "enabling environment" for taking insecticide treated nets to national scale: the Tanzanian experience

    Get PDF
    INTRODUCTION: Malaria is the largest cause of health services attendance, hospital admissions and child deaths in Tanzania. At the Abuja Summit in April 2000 Tanzania committed itself to protect 60% of its population at high risk of malaria by 2005. The country is, therefore, determined to ensure that sustainable malaria control using insecticide-treated nets is carried out on a national scale. CASE DESCRIPTION: Tanzania has been involved for two decades in the research process for developing insecticide-treated nets as a malaria control tool, from testing insecticides and net types, to assessing their efficacy and effectiveness, and exploring new ways of distribution. Since 2000, the emphasis has changed from a project approach to that of a concerted multi-stakeholder action for taking insecticide-treated nets to national scale (NATNETS). This means creating conditions that make insecticide-treated nets accessible and affordable to all those at risk of malaria in the country. This paper describes Tanzania's experience in (1) creating an enabling environment for insecticide-treated nets scale-up, (2) promoting the development of a commercial sector for insecticide-treated nets, and (3) targeting pregnant women with highly subsidized insecticide-treated nets through a national voucher scheme. As a result, nearly 2 million insecticide-treated nets and 2.2 million re-treatment kits were distributed in 2004. CONCLUSION: National upscaling of insecticide-treated nets is possible when the programme is well designed, coordinated and supported by committed stakeholders; the Abuja target of protecting 60% of those at high risk is feasible, even for large endemic countries

    Circular holonomy in the Taub-NUT spacetime

    Full text link
    Parallel transport around closed circular orbits in the equatorial plane of the Taub-NUT spacetime is analyzed to reveal the effect of the gravitomagnetic monopole parameter on circular holonomy transformations. Investigating the boost/rotation decomposition of the connection 1-form matrix evaluated along these orbits, one finds a situation that reflects the behavior of the general orthogonally transitive stationary axisymmetric case and indeed along Killing trajectories in general.Comment: 9 pages, LaTeX iopart class, no figure

    Ballistic matter waves with angular momentum: Exact solutions and applications

    Full text link
    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schroedinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. Our theory directly applies to p-wave photodetachment in an electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and semiclassical theor

    Propagation of charged particle waves in a uniform magnetic field

    Full text link
    This paper considers the probability density and current distributions generated by a point-like, isotropic source of monoenergetic charges embedded into a uniform magnetic field environment. Electron sources of this kind have been realized in recent photodetachment microscopy experiments. Unlike the total photocurrent cross section, which is largely understood, the spatial profiles of charge and current emitted by the source display an unexpected hierarchy of complex patterns, even though the distributions, apart from scaling, depend only on a single physical parameter. We examine the electron dynamics both by solving the quantum problem, i. e., finding the energy Green function, and from a semiclassical perspective based on the simple cyclotron orbits followed by the electron. Simulations suggest that the semiclassical method, which involves here interference between an infinite set of paths, faithfully reproduces the features observed in the quantum solution, even in extreme circumstances, and lends itself to an interpretation of some (though not all) of the rich structure exhibited in this simple problem.Comment: 39 pages, 16 figure
    • …
    corecore