23 research outputs found

    Dissemination, Future Research and Education:

    Get PDF
    This booklet is one of three final documentations of the results of the COST-Action TU 1403 ‘ADAPTIVE FACADE NETWORK’ to be published next to the proceedings of the Final COST Conference ‘FACADE 2018 – ADAPTIVE!’ and a Special Issue of the Journal of Façade Design & Engineering (JFDE). While the proceedings and the journal present current scientific research papers selected through a traditional peer review process, these three final documentations have another focus and objective. These three documentations will share a more holistic and comparative view to the scientific and educational framework of this COST-Action on adaptive facades with the objective to generate an overview and a summary – different from the more specific approach of the proceedings and connecting to the first publication that was presenting the participating institutions. The three titles are the following and are connected to the deliverables of the responsible Working Groups (WG): Booklet 3.1 Case Studies (WG1) Booklet 3.2 Building Performance Simulation and Characterisation of Adaptive Facades (WG2) Booklet 3.3 Dissemination, Future Research and Education (WG4) Booklet 3.1 concentrates on the definition and classification of adaptive facades by describing the state of the art of real-world and research projects and by providing a database to be published on COST TU 1403 website (http://tu1403.eu/). Booklet 3.2 focusses on comparing simulation and testing methods, tools and facilities. And finally, Booklet 3.3 documents the interdisciplinary, horizontal and vertical networking and communication between the different stakeholders of the COST-Action organised through Short Term Scientific Missions (STSM), Training Schools and support sessions for Early Stage Researchers (ESR) / Early Career Investigators (ECI), industry workshops, and related surveys as specific means of dissemination to connect research and education. All three booklets show the diversity of approaches to the topic of adaptive facades coming from the different participants and stakeholders, such as: architecture and design, engineering and simulation, operation and management, industry and fabrication and from education and research. The tasks and deliverables of Working Group 4 were organized and supported by the following group members and their functions: – Thomas Henriksen, Denmark ESR/ECI – Ulrich Knaack, The Netherlands Chair (2015-16) – Thaleia Konstantinou, The Netherlands ESR/ECI – Christian Louter, The Netherlands Vice-Chair, STSM Coordinator – Andreas Luible, Switzerland Website, Meetings – David Metcalfe, United Kingdom Training Schools – Uta Pottgiesser, Germany Chair (2017-18) As editors and Chairs, we would like to thank the Working Group members and authors from other Working Groups for their significant and comprehensive contributions to this booklet. Moreover, we sincerely thank Ashal Tyurkay for her great assistance during the whole editing and layout process. We also want to thank COST (European Cooperation in Science and Technology)

    Bioreactor for the perfusion culture of cells

    No full text

    Stroke subtype classification by geometrical descriptors of lesion shape.

    No full text
    Inference of etiology from lesion pattern in acute magnetic resonance imaging is valuable for management and prognosis of acute stroke patients. This study aims to assess the value of three-dimensional geometrical lesion-shape descriptors for stroke-subtype classification, specifically regarding stroke of cardioembolic origin.Stroke Etiology was classified according to ASCOD in retrospectively selected patients with acute stroke. Lesions were segmented on diffusion-weighed datasets, and descriptors of lesion shape quantified: surface area, sphericity, bounding box volume, and ratio between bounding box and lesion volume. Morphological measures were compared between stroke subtypes classified by ASCOD and between patients with embolic stroke of cardiac and non-cardiac source.150 patients (mean age 77 years; 95% CI, 65-80 years; median NIHSS 6, range 0-22) were included. Group comparison of lesion shape measures demonstrated that lesions caused by small-vessel disease were smaller and more spherical compared to other stroke subtypes. No significant differences of morphological measures were detected between patients with cardioembolic and non-cardioembolic stroke.Stroke lesions caused by small vessel disease can be distinguished from other stroke lesions based on distinctive morphological properties. However, within the group of embolic strokes, etiology could not be inferred from the morphology measures studied in our analysis

    Photo-chemically induced polycondensation of a pure phenolic resin for additive manufacturing

    No full text
    Bakelite© or phenoplasts are considered the first synthetic polymers in the world. These resins, produced by polycondensation, have always been known for their chemical resistance, excellent flame resistance and thermal stability. Originally, pressure and temperature are required for processing and limited the production of phenoplasts to compression and injection molding. However, with the invention of lithography and 3D printing, new desirable processing possibilities have emerged. Previous work in the area of additive manufacturing of phenoplasts has focused on thin-layer photoresists or parts that can only be printed using other polymers as a matrix. Here we report direct 3D printing of phenoplasts, without binders or matrix polymers, using Hot Lithography, a stereolithography-based 3D printing technology at elevated temperatures. In simultaneous thermal analysis and photo-DSC experiments we investigated suitable conditions for the UV-induced polycondensation of the phenolic resins. Based on these experiments, formulations are presented, which are stable under the selected printing conditions and yet reactive enough for the printing process. Direct 3D printing with Hot Lithography and post-curing gave bubble-free specimens, thus a simple production of complicated structures could be achieved without the conventional complex injection molding and more importantly the first bulk polycondensation process using this technique.</p

    Two- and three-dimensional representations of acute stroke lesions analyzed in this study.

    No full text
    <p>Acute stroke lesions are shown in red overlayed on diffusion-weighted images in the first column. Three-dimensional reconstructions are illustrated in the second column. The third column shows application of morphological shape measures for lesions caused by cardioembolism (A), atherothrombosis (B) and small-vessel disease (C).</p

    Hospital acquired vancomycin resistant enterococci in surgical intensive care patients – a prospective longitudinal study

    No full text
    Abstract Background Vancomycin resistant enterococci (VRE) occur with enhanced frequency in hospitalised patients. This study elucidates the prevalence of VRE on admission among surgical intensive care unit (SICU) patients, whether these patients are at special risk for VRE acquisition and which risk factors support this process. Methods Patients admitted to SICUs of the University Hospital Münster were examined during August–October 2017. VRE screening was performed within 48 h after admission and directly prior to discharge of patients. In parallel risk factors were recorded to estimate their effect on VRE acquisition during SICU stay. Results In total, 374 patients (68% male) with a median age of 66 years were admitted to one of the SICUs during the investigation period. Of all, 336 patients (89.8%) were screened on admission and 268 (71.7%) on discharge. Nine patients were admitted with previously known VRE colonisation. Twelve (3.6%) further patients were VRE positive on admission. During ICU stay, eight (3.0%) additional patients turned out to be VRE colonised. Risk factors found to be significantly associated with VRE acquisition were median length of stay on the ICU (14 vs. 3 days; p = 0.01), long-term dialysis (12.5% vs. 2.0% of patients; p = 0.05), and antibiotic treatment with flucloxacillin (28.6% vs. 7.2% of patients; p = 0.01) or piperacillin/tazobactam (57.1% vs. 26.6% of patients; p = 0.01). Conclusions SICU patients are not at special risk for VRE acquisition. Previous stay on a SICU should therefore not be considered as specific risk factor for VRE colonisation

    Representative illustration of three-dimensional lesion reconstruction.

    No full text
    <p>Stroke caused by arterial dissection of the left internal carotid artery, representations of the acute lesion are shown in red as two-dimensional overlay on diffusion weighted images (A) and as three-dimensional reconstructions (B). Bounding box of the lesion is illustrated in C.</p
    corecore