273 research outputs found
Transfer Learning for Improving Model Predictions in Highly Configurable Software
Modern software systems are built to be used in dynamic environments using
configuration capabilities to adapt to changes and external uncertainties. In a
self-adaptation context, we are often interested in reasoning about the
performance of the systems under different configurations. Usually, we learn a
black-box model based on real measurements to predict the performance of the
system given a specific configuration. However, as modern systems become more
complex, there are many configuration parameters that may interact and we end
up learning an exponentially large configuration space. Naturally, this does
not scale when relying on real measurements in the actual changing environment.
We propose a different solution: Instead of taking the measurements from the
real system, we learn the model using samples from other sources, such as
simulators that approximate performance of the real system at low cost. We
define a cost model that transform the traditional view of model learning into
a multi-objective problem that not only takes into account model accuracy but
also measurements effort as well. We evaluate our cost-aware transfer learning
solution using real-world configurable software including (i) a robotic system,
(ii) 3 different stream processing applications, and (iii) a NoSQL database
system. The experimental results demonstrate that our approach can achieve (a)
a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS'17
(Why) Is My Prompt Getting Worse? Rethinking Regression Testing for Evolving LLM APIs
Large Language Models (LLMs) are increasingly integrated into software
applications. Downstream application developers often access LLMs through APIs
provided as a service. However, LLM APIs are often updated silently and
scheduled to be deprecated, forcing users to continuously adapt to evolving
models. This can cause performance regression and affect prompt design choices,
as evidenced by our case study on toxicity detection. Based on our case study,
we emphasize the need for and re-examine the concept of regression testing for
evolving LLM APIs. We argue that regression testing LLMs requires fundamental
changes to traditional testing approaches, due to different correctness
notions, prompting brittleness, and non-determinism in LLM APIs.Comment: conference versio
Reify Your Collection Queries for Modularity and Speed!
Modularity and efficiency are often contradicting requirements, such that
programers have to trade one for the other. We analyze this dilemma in the
context of programs operating on collections. Performance-critical code using
collections need often to be hand-optimized, leading to non-modular, brittle,
and redundant code. In principle, this dilemma could be avoided by automatic
collection-specific optimizations, such as fusion of collection traversals,
usage of indexing, or reordering of filters. Unfortunately, it is not obvious
how to encode such optimizations in terms of ordinary collection APIs, because
the program operating on the collections is not reified and hence cannot be
analyzed.
We propose SQuOpt, the Scala Query Optimizer--a deep embedding of the Scala
collections API that allows such analyses and optimizations to be defined and
executed within Scala, without relying on external tools or compiler
extensions. SQuOpt provides the same "look and feel" (syntax and static typing
guarantees) as the standard collections API. We evaluate SQuOpt by
re-implementing several code analyses of the Findbugs tool using SQuOpt, show
average speedups of 12x with a maximum of 12800x and hence demonstrate that
SQuOpt can reconcile modularity and efficiency in real-world applications.Comment: 20 page
Systematische Untersuchung zur Steuerung der Morphologie in Polymer-Fulleren-Heteroübergangssolarzellen
Organic photovoltaics developed step by step and actually work out into a
market-based competition to the well-established inorganic thin-film solar
cells. The advantages of such polymer solar cells are flexibility, low
weight, semi-transparency and comparably high production speed. The
combination of these advantages currently outperforms other technologies in
its entirety. Furthermore, the rather low power conversion efficiency of
organic solar cells can be increased by progressive materials development
and optimization of processing and compares to the performance of other
inorganic thin-film photovoltaic solar cells. Self-assembly (phase
separation and aggregation/crystallization) of the employed photoactive
materials, before, during and after deposition of photoactive thin films
from a common solution, plays a significant role for the power conversion
efficiency. Thus the morphology of the photoactive layer is of fundamental
importance for the generation and transport of free charge carriers and
also for power losses due to recombination, if charge separation and
transport are hindered. It is already known that the phase separation into
pristine polymer phases for hole transport and pristine fullerene phases
for electron transport is just as important as the formation of a
homogeneously mixed phase for free charge carrier generation. Ideally the
transport phases are aggregated/crystalline and the homogeneously mixed
phase is amorphous. This leads to an energetically favorable organization
of the material phases, finally resulting in an improved generation and
disproved recombination of free charge carriers.In the present work these
influences, phase separation and aggregation of materials, are studied. In
particular, the influence of structural order of the pristine polymer phase
on the photovoltaic properties of solar cells is in the focus of research.
By targeted utilization of the materials properties of the applied
polymers, phase separation and aggregation could be controlled precisely
and thus the relation between morphology and solar cell parameters could be
investigated in detail. It is demonstrated how the morphology in
polymer-fullerene heterojunction solar cells can be selectively manipulated
by the derivatization of the fullerene, the solution concentration, the
polymer:fullerene blend ratio and the polymer: polymer blend ratio in a
ternary mixture with the fullerene. Fine-scaled parameter variations lead
to very systematic variations of the morphology. This allowed a controlled
and optimized proportioning of a three-phase system of aggregated polymer
phases and aggregated fullerene phases for charge transport, as well as a
homogeneously mixed polymer:fullerene phase for free charge carrier
generation. Qualitative and quantitative analysis of the structural order
in the polymeric phase and the phase separation of the polymer from the
fullerene derivative enabled deeper insights into the bulk morphology.
Particularly absorption, photo- and electroluminescence spectroscopy have
proven their ease as reliable methods for analysis of structural order.
Additionally, X-ray scattering (GiWAXS) and AFM measurements were performed
to resemble the three-dimensional bulk morphology. It is originally
demonstrated for the first time how electroluminescence spectroscopy allows
deeper insight into the nano-morphology at the interface between the
polymer and fullerene domains in contact with disordered polymer:fullerene
mixed domains. In combination with the measurement of current-voltage
characteristics (IV) and external quantum efficiency (EQE), the influence
of morphology on the solar cell characteristics is demonstrated.
Furthermore, the presented hypothetical optimal morphology of
well-dimensioned pristine phases for charge transport and disordered
homogeneous mixed phases for free charge generation and barrier for
recombination is proven. The combined approach for morphology description
is unique and allows for simple and rapid analysis of the active layer
morphology, comparable to GiWAXS measurements. To conclude, this work
presents fundamental insights into the relationship between structural
properties of the photoactive layer and the solar cell functionality.Solarzellen kann durch die fortschreitende Materialentwicklung und
Optimierung der Prozessierungsmethoden mit der Effizienz etablierter
anorganischer Dünnschichtphotovoltaik konkurrieren. Die Selbstorganisation,
d.h. Phasenseparation und Aggregation/Kristallisation der eingesetzten
photoaktiven Materialien, vor, während und nach der Abscheidung zu
photovoltaisch aktiven dünnen Schichten aus der gemeinsamen Lösung, spielt
bei der Leistungsoptimierung eine wesentliche Rolle. Die somit ausgebildete
Morphologie der photoaktiven Schicht ist von fundamentaler Bedeutung für
die Generation von freien Ladungsträgern und deren Transport und folglich
auch für Leistungsverluste durch Rekombination, sofern
Ladungsträgertrennung und Transport nicht effektiv stattfinden können. Es
ist bekannt, dass die Phasenseparation in reine Polymerphasen für den
Transport der Löcher sowie reine Fullerenphasen für den Transport der
Elektronen ebenso von Bedeutung ist wie die Ausbildung einer homogenen
Mischphase für die Erzeugung der freien Ladungsträger. Idealerweise liegen
die Transportphasen aggregiert/kristallin und die Mischphase amorph vor.
Dann ergibt sich eine energetisch sinnvolle Organisation der
Materialphasen, sodass die Generation freier Ladungsträger maximiert und
deren Rekombination minimiert wird.In der vorliegenden Arbeit werden genau
diese morphologischen Einflüsse, Phasenseparation und Aggregation der
Materialien, untersucht. Insbesondere der Einfluss der strukturellen
Ordnung der reinen Polymerphase auf die photovoltaischen Eigenschaften der
Solarzelle steht hier im Vordergrund. Durch die gezielte Ausnutzung der
Materialeigenschaften der eingesetzten Polymere konnten gezielt und
kontrolliert Phasenseparation und Aggregation gesteuert und deren Einfluss
auf die Solarzellparameter untersucht werden. Es wird gezeigt, wie die
Morphologie von Polymer-Fulleren-Heteroübergangssolarzellen im Detail durch
die Fullerenderivatisierung, die Lösungskonzentration und das
Polymer:Fulleren-Mischungsverhältnis ebenso wie das
Polymer:Polymer-Mischungsverhältnis in einer ternären Mischung mit dem
Fulleren gezielt manipuliert werden kann. Mittels feinskalierter
Parametervariationen konnten sehr systematische Variationen in der
Morphologie induziert werden. Dies ermöglichte eine gezielte, optimierte
Proportionierung eines Dreiphasensystems aus getrennt aggregierten Polymer-
und Fullerenphasen für den Ladungstransport sowie einer homogenen
Polymer:Fulleren-Mischphase zur freien Ladungsträgergeneration. Die
vorgestellten Methoden zur qualitativen und quantitativen Beschreibung der
polymeren Ordnung sowie der Phasenseparation des Polymers vom
Fullerenderivat ermöglichen tiefere Einblicke in die Volumenmorphologie.
Die quantitative Analyse von Absorptions-, Photo- und
Elektrolumineszenzspektren hat sich hier als besonders einfach zu
handhabende Methode erwiesen. Mit der Unterstützung von Röntgenbeugung
(GiWAXS) und AFM-Messungen ist es möglich, eine sehr genaue Vorstellung von
der dreidimensionalen Schichtmorphologie zu erhalten. Insbesondere die
Elektrolumineszenzspektroskopie ermöglichte erstmalig einen tieferen
Einblick in die Nanomorphologie an den Grenzflächen zwischen geordneten
Polymer- und Fullerendomänen sowie ungeordneten
Polymer:Fulleren-Mischphasen. Die Einflüsse der Morphologie auf die
Solarzelleigenschaften konnten letztendlich in Verbindung mit der Messung
der Strom-Spannungs-Kennlinien (I-V) und der externen Quanteneffizienz
(EQE) abgeleitet werden. Damit konnte das vorgestellte Bild der
hypothetisch optimalen Morphologie bestehend aus wohldimensionierten reinen
geordneten Ladungstransportphasen sowie ungeordneten homogenen Mischphasen
als Rekombinationsbarriere und Generationsschicht für freie Ladungsträger
nachgewiesen werden. Der vorgestellte kombinierte Ansatz zur
Morphologiebeschreibung ist bislang einzigartig und ermöglicht, abgesehen
von den GiWAXS-Messungen, in Zukunft eine einfache und schnelle Analyse der
Aktivschichtmorphologie. Darüber hinaus wird in dieser Arbeit ein tieferes
Verständnis der Beziehung zwischen den Struktureigenschaften der
photoaktiven Schicht und der Solarzellfunktion entwickelt
Integrating the common variability language with multilanguage annotations for web engineering
Web applications development involves managing a high diversity of files and resources like code, pages or style sheets, implemented in different languages. To deal with the automatic generation of
custom-made configurations of web applications, industry usually adopts annotation-based approaches even though the majority of studies encourage the use of composition-based approaches to implement
Software Product Lines. Recent work tries to combine both approaches to get the complementary benefits. However, technological companies are reticent to adopt new development paradigms
such as feature-oriented programming or aspect-oriented programming.
Moreover, it is extremely difficult, or even impossible, to apply
these programming models to web applications, mainly because of
their multilingual nature, since their development involves multiple
types of source code (Java, Groovy, JavaScript), templates (HTML,
Markdown, XML), style sheet files (CSS and its variants, such as
SCSS), and other files (JSON, YML, shell scripts). We propose to
use the Common Variability Language as a composition-based approach
and integrate annotations to manage fine grained variability
of a Software Product Line for web applications. In this paper, we (i)
show that existing composition and annotation-based approaches,
including some well-known combinations, are not appropriate to
model and implement the variability of web applications; and (ii)
present a combined approach that effectively integrates annotations
into a composition-based approach for web applications. We implement
our approach and show its applicability with an industrial
real-world system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
- …