35 research outputs found

    Liver resection or combined chemoembolization and radiofrequency ablation improve survival in patients with hepatocellular carcinoma

    Get PDF
    Background/ Aims: To evaluate the long-term outcome of surgical and non-surgical local treatments of patients with hepatocellular carcinoma (HCC). Methods: We stratified a cohort of 278 HCC patients using six independent predictors of survival according to the Vienna survival model for HCC (VISUM- HCC). Results: Prior to therapy, 224 HCC patients presented with VISUM stage 1 (median survival 18 months) while 29 patients were classified as VISUM stage 2 (median survival 4 months) and 25 patients as VISUM stage 3 (median survival 3 months). A highly significant (p < 0.001) improved survival time was observed in VISUM stage 1 patients treated with liver resection ( n = 52; median survival 37 months) or chemoembolization (TACE) and subsequent radiofrequency ablation ( RFA) ( n = 44; median survival 45 months) as compared to patients receiving chemoembolization alone (n = 107; median survival 13 months) or patients treated by tamoxifen only (n = 21; median survival 6 months). Chemoembolization alone significantly (p <= 0.004) improved survival time in VISUM stage 1 - 2 patients but not (p = 0.341) in VISUM stage 3 patients in comparison to those treated by tamoxifen. Conclusion: Both liver resection or combined chemoembolization and RFA improve markedly the survival of patients with HCC

    On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field

    Get PDF
    The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established

    On the reproducibility of extrusion-based bioprinting: round robin study on standardization in the field

    Get PDF
    The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established

    Monitoring of viscosity changes during free radical polymerization using fluorescence lifetime measurements

    No full text
    A molecular rotor with a fluorescence lifetime depending on the local viscosity of its surroundings has been successfully used as a probe to monitor local viscosity changes during the bulk radical polymerization of methyl methacrylate

    Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells

    Get PDF
    Intercellular communication is a fundamental process in the development and functioning of multicellular organisms. Recently, an essentially new type of intercellular communication, based on thin membrane channels between cells, has been reported. These structures, termed intercellular or tunnelling nanotubes (TNTs), permit the direct exchange of various components or signals (e.g., ions, proteins, or organelles) between non-adjacent cells at distances over 100 μm. Our studies revealed the presence of tunnelling nanotubes in microvascular endothelial cells (HMEC-1). The TNTs were studied with live cell imaging, environmental scanning electron microscopy (ESEM), and coherent anti-Stokes Raman scattering spectroscopy (CARS). Tunneling nanotubes showed marked persistence: the TNTs could connect cells over long distances (up to 150 μm) for several hours. Several cellular organelles were present in TNTs, such as lysosomes and mitochondria. Moreover, we could identify lipid droplets as a novel type of cargo in the TNTs. Under angiogenic conditions (VEGF treatment) the number of lipid droplets increased significantly. Arachidonic acid application not only increased the number of lipid droplets but also tripled the extent of TNT formation. Taken together, our results provide the first demonstration of lipid droplets as a cargo of TNTs and thereby open a new field in intercellular communication research

    Fluorescent conjugated block copolymer nanoparticles by controlled mixing

    No full text
    Monitoring of the formation of stable fluorescent nanoparticles from controlled mixing of a THF solution of poly(fluorene ethynylene)-block-poly(ethylene glycol) in a microfluidic laminar flow crossjunction by spatially resolved fluorescence spectroscopy reveals the time scale of particle formation as well as incorporation of small molecule guests and the role of solvent mixing

    Myeloid Cell-Restricted STAT3 Signaling Controls a Cell-Autonomous Antifibrotic Repair Program

    No full text
    Myeloid cells can be beneficial as well as harmful in tissue regenerative responses. The molecular mechanisms by which myeloid cells control this critical decision of the immune system are not well understood. Using two different models of physiological acute or pathological chronic skin damage, in this study we identified myeloid cell-restricted STAT3 signaling as important and an injury context-dependent regulator of skin fibrosis. Targeted disruption of STAT3 signaling in myeloid cells significantly accelerated development of pathological skin fibrosis in a model of chronic bleomycin-induced tissue injury, whereas the impact on wound closure dynamics and quality of healing after acute excision skin injury was minor. Chronic bleomycin-mediated tissue damage in control mice provoked an antifibrotic gene signature in macrophages that was characterized by upregulated expression of IL-10, SOCS3, and decorin. In contrast, in STAT3-deficient macrophages this antifibrotic repair program was abolished whereas TGF-beta 1 expression was increased. Notably, TGF-beta 1 synthesis in cultured control bone marrow-derived macrophages (BMDMs) was suppressed after IL-10 exposure, and this suppressive effect was alleviated by STAT3 deficiency. Accordingly, coculture of IL-10-stimulated control BMDMs with fibroblasts suppressed expression of the TGF-beta 1 downstream target connective tissue growth factor in fibroblasts, whereas this suppressive effect was lost by STAT3 deficiency in BMDMs. Our findings highlight a previously unrecognized protective role of myeloid cell-specific STAT3 signaling in immune cell-mediated skin fibrosis, and its regulatory pathway could be a potential target for therapy
    corecore