86 research outputs found

    A Traffic Merging and Generation Framework for Realistic Synthesis of Network Traffic

    Get PDF
    The Internet is steadily growing and is of increasing importance for our economy and society. Due to this increased importance it is also in the focus of attacks, e.g. distributed denial of service (DDoS) attacks. As attackers dynamically change their attack behaviour, novel detection approaches that are able to automatically adjust to these dynamic attacks are needed. To train and test such network anomaly detection systems, it is necessary to provide realistic data. As of today, this area of research suffers from the lack of publicly available datasets that can be used to train and test anomaly detection systems and are exchangeable to allow reproducible research. Therefore, we propose a novel framework that enables researchers and developers to generate customizable synthetic datasets. It not only allows to generate fully-synthetic network traffic, but also to generate semi-synthetic network traffic by merging of multiple network captures from reallive environments. Further, it allows the mapping of IP addresses as well as the modi﬿cation of other header ﬿elds, if desired. This enables researchers and developers to exchange network traces from sensitive environments without revealing any sensitive end-user related information, while perceiving the relevant characteristics of the network(s) and attack(s). In the following, we provide a description of, the problem, our concept and the features of our solution, the architecture and functional model and ﬿nally provide a short summary together with an outlook for future work

    Lamellar body ultrastructure revisited: high-pressure freezing and cryo-electron microscopy of vitreous sections

    Get PDF
    Lamellar bodies are the storage sites for lung surfactant within type II alveolar epithelial cells. The structure-function models of lamellar bodies are based on microscopic analyses of chemically fixed tissue. Despite available alternative fixation methods that are less prone to artifacts, such as cryofixation by high-pressure freezing, the nature of the lung, being mostly air filled, makes it difficult to take advantage of these improved methods. In this paper, we propose a new approach and show for the first time the ultrastructure of intracellular lamellar bodies based on cryo-electron microscopy of vitreous sections in the range of nanometer resolution. Thus, unspoiled by chemical fixation, dehydration and contrasting agents, a close to native structure is revealed. Our approach uses perfluorocarbon to substitute the air in the alveoli. Lung tissue was subsequently high-pressure frozen, cryosectioned and observed in a cryo-electron microscope. The lamellar bodies clearly show a tight lamellar morphology. The periodicity of these lamellae was 7.3nm. Lamellar bifurcations were observed in our cryosections. The technical approach described in this paper allows the examination of the native cellular ultrastructure of the surfactant system under near in vivo conditions, and therefore opens up prospectives for scrutinizing various theories of lamellar body biogenesis, exocytosis and recyclin

    E7(7) invariant Lagrangian of d=4 N=8 supergravity

    Get PDF
    We present an E7(7) invariant Lagrangian that leads to the equations of motion of d=4 N=8 supergravity without using Lagrange multipliers. The superinvariance of this new action and the closure of the supersymmetry algebra are proved explicitly for the terms that differ from the Cremmer--Julia formulation. Since the diffeomorphism symmetry is not realized in the standard way on the vector fields, we switch to the Hamiltonian formulation in order to prove the invariance of the E7(7) invariant action under general coordinate transformations. We also construct the conserved E7(7)-Noether current of maximal supergravity and we conclude with comments on the implications of this manifest off-shell E7(7)-symmetry for quantizing d=4 N=8 supergravity, in particular on the E7(7)-action on phase space.Comment: 45 pages, references adde

    How Relevant Is the Parallax Effect on Low Centered Pelvic Radiographs in Total Hip Arthroplasty

    Get PDF
    The correct cup position in total hip arthroplasty (THA) is usually assessed on anteroposterior low centered pelvic radiographs, harboring the risk of misinterpretation due to projection of a three-dimensional geometry on a two-dimensional plane. In the current study, we evaluate the effect of this parallax effect on the cup inclination and anteversion in THA. In the course of a prospective clinical trial, 116 standardized low centered pelvic radiographs, as routinely obtained after THA, were evaluated regarding the impact of central beam deviation on the cup inclination and anteversion angles. Measurements of the horizontal and vertical beam offset with two different methods of parallax correction were compared with each other. Furthermore, the effect of parallax correction on the accuracy ofmeasuring the cup position was investigated. The mean difference between the two parallax correction methods was 0.2° ± 0.1° (from 0° to 0.4°) for the cup inclination and 0.1° ± 0.1° (from −0.1° to 0.2°) for the anteversion. For a typically intended cup position of a 45° inclination and 15° anteversion, the parallax effect led to a mean error of −1.5° ± 0.3° for the inclination and 0.6° ± 1.0° for the anteversion. Central beam deviation resulted in a projected higher cup inclination up to 3.7°, and this effect was more prominent in cups with higher anteversion. In contrast, the projected inclination decreased due to the parallax effect up to 3.2°, especially in cups with high inclination. The parallax effect on routinely obtained low centered pelvic radiographs is low and not clinically relevant due to the compensating effect of simultaneous medial and caudal central beam deviation

    Generalized E(7(7)) coset dynamics and D=11 supergravity

    Full text link
    The hidden on-shell E(7(7)) symmetry of maximal supergravity is usually discussed in a truncation from D=11 to four dimensions. In this article, we reverse the logic and start from a theory with manifest off-shell E(7(7)) symmetry inspired by West's coset construction. Following de Wit's and Nicolai's idea that a 4+56 dimensional "exceptional geometry" underlies maximal supergravity, we construct the corresponding Lagrangian and the supersymmetry variations for the 56 dimensional subsector. We prove that both the dynamics and the supersymmetry coincide with D=11 supergravity in a truncation to d=7 in the expected way.Comment: 42 pages, v2: references adde

    Pure type I supergravity and DE(10)

    Get PDF
    We establish a dynamical equivalence between the bosonic part of pure type I supergravity in D=10 and a D=1 non-linear sigma-model on the Kac-Moody coset space DE(10)/K(DE(10)) if both theories are suitably truncated. To this end we make use of a decomposition of DE(10) under its regular SO(9,9) subgroup. Our analysis also deals partly with the fermionic fields of the supergravity theory and we define corresponding representations of the generalized spatial Lorentz group K(DE(10)).Comment: 28 page

    Flattening the curve in 52 days: characterisation of the COVID-19 pandemic in the Principality of Liechtenstein - an observational study.

    Get PDF
    BACKGROUND The principality of Liechtenstein had its first COVID-19 case at the beginning of March 2020. After exponential growth, the pandemic’s first wave was contained, with the last case being diagnosed 52 days after the initial occurrence. AIM To characterise the COVID-19 pandemic in Liechtenstein. METHODS All patients diagnosed in Liechtenstein were followed up until recovery and again 6–8 weeks after symptom onset. They were contacted every 2 days to record their clinical status until the resolution of their symptoms. The diagnosis of COVID-19 was based on clinical symptoms and molecular testing. Household and close workplace contacts were included in the follow-up, which also comprised antibody testing. In addition, public health measures installed during the pandemic in Liechtenstein are summarised. RESULTS During the first wave, 5% of the population obtained a reverse transcriptase polymerase chain reaction test. A total of 95 patients (median age 39 years) were diagnosed with COVID-19 (82 who resided in Liechtenstein), resulting in an incidence in Liechtenstein of 0.211%. One patient, aged 94, died (mortality rate 1%). Only 62% of patients could retrospectively identify a potential source of infection. Testing the patients’ household and close workplace contacts (n = 170) with antibody tests revealed that 25% of those tested were additional COVID-19 cases, a quarter of whom were asymptomatic. Those households which adhered to strict isolation measures had a significantly lower rate of affected household members than those who didn’t follow such measures. The national public health measures never restricted free movement of residents. Masks were only mandatory in healthcare settings. The use of home working for the general workforce was promoted. Gatherings were prohibited. Schools, universities, certain public spaces (like sports facilities and playgrounds), childcare facilities, nonessential shops, restaurants and bars were closed. Social distancing, hygienic measures, solidarity and supporting individuals who were at risk were the main pillars of the public health campaigns. CONCLUSION The close collaboration of all relevant stakeholders allowed for the complete workup of all COVID-19 patients nationwide. A multitude of factors (e.g., young age of the patients, low-threshold access to testing, close monitoring of cases, high alertness and adherence to public health measures by the population) led to the early containment of the first wave of the pandemic, with a very low rate of serious outcomes. Antibody testing for SARS-CoV-2 revealed a substantial proportion of undiagnosed COVID-19 cases among close contacts of the patients

    Frequency of serological non-responders and false-negative RT-PCR results in SARS-CoV-2 testing: a population-based study.

    Get PDF
    Objectives The sensitivity of molecular and serological methods for COVID-19 testing in an epidemiological setting is not well described. The aim of the study was to determine the frequency of negative RT-PCR results at first clinical presentation as well as negative serological results after a follow-up of at least 3 weeks. Methods Among all patients seen for suspected COVID-19 in Liechtenstein (n=1921), we included initially RT-PCR positive index patients (n=85) as well as initially RT-PCR negative (n=66) for follow-up with SARS-CoV-2 antibody testing. Antibodies were detected with seven different commercially available immunoassays. Frequencies of negative RT-PCR and serology results in individuals with COVID-19 were determined and compared to those observed in a validation cohort of Swiss patients (n=211). Results Among COVID-19 patients in Liechtenstein, false-negative RT-PCR at initial presentation was seen in 18% (12/66), whereas negative serology in COVID-19 patients was 4% (3/85). The validation cohort showed similar frequencies: 2/66 (3%) for negative serology, and 16/155 (10%) for false negative RT-PCR. COVID-19 patients with negative follow-up serology tended to have a longer disease duration (p=0.05) and more clinical symptoms than other patients with COVID-19 (p<0.05). The antibody titer from quantitative immunoassays was positively associated with the number of disease symptoms and disease duration (p<0.001). Conclusions RT-PCR at initial presentation in patients with suspected COVID-19 can miss infected patients. Antibody titers of SARS-CoV-2 assays are linked to the number of disease symptoms and the duration of disease. One in 25 patients with RT-PCR-positive COVID-19 does not develop antibodies detectable with frequently employed and commercially available immunoassays
    corecore