46 research outputs found

    Data Citation in Neuroimaging: Proposed Best Practices for Data Identification and Attribution

    Get PDF
    Data sharing and reuse, while widely accepted as good ideas, have been slow to catch on in any concrete and consistent way. One major hurdle within the scientific community has been the lack of widely accepted standards for citing that data, making it difficult to track usage and measure impact. Within the neuroimaging community, there is a need for a way to not only clearly identify and cite datasets, but also to derive new aggregate sets from multiple sources while clearly maintaining lines of attribution. This work presents a functional prototype of a system to integrate Digital Object Identifiers (DOI) and a standardized metadata schema into a XNAT-based repository workflow, allowing for identification of data at both the project and image level. These item and source level identifiers allow any newly defined combination of images, from any number of projects, to be tagged with a new group-level DOI that automatically inherits the individual attributes and provenance information of its constituent parts. This system enables the tracking of data reuse down to the level of individual images. The implementation of this type of data identification system would impact researchers and data creators, data hosting facilities, and data publishers, but the benefit of having widely accepted standards for data identification and attribution would go far toward making data citation practical and advantageous

    Everything Matters: The ReproNim Perspective on Reproducible Neuroimaging

    Get PDF
    There has been a recent major upsurge in the concerns about reproducibility in many areas of science. Within the neuroimaging domain, one approach is to promote reproducibility is to target the re-executability of the publication. The information supporting such re-executability can enable the detailed examination of how an initial finding generalizes across changes in the processing approach, and sampled population, in a controlled scientific fashion. ReproNim: A Center for Reproducible Neuroimaging Computation is a recently funded initiative that seeks to facilitate the last mile implementations of core re-executability tools in order to reduce the accessibility barrier and increase adoption of standards and best practices at the neuroimaging research laboratory level. In this report, we summarize the overall approach and tools we have developed in this domain

    CANDI Store: An Infrastructure for Neuroimage Storage and Processing

    Get PDF
    In order to support the local data management need for neuroimaging researchers at UMass Medical School within the Child and Adolescent NeuroDevelopment Initiative (CANDI) and beyond, we have implemented a XNAT (xnat.org) instance called CANDIStore. XNAT is an open source imaging informatics platform, developed by the Neuroinformatics Research Group at Washington University. It facilitates common management, productivity, and quality assurance tasks for imaging and associated data. Located securely within the medical school firewall, CANDIStore offers a comprehensive set of image management tools. Users can be authenticated based against their UMass credentials, create private projects, manage research team access, DICOM \u27push\u27 directly to CANDIStore from the MRI imaging console, manage demographic and additional subject variables, and perform automated analysis and processing pipelines. CANDIStore is an essential adjunct to the daily operations of neuroimaging research

    An assessment of the autism neuroimaging literature for the prospects of re-executability

    Get PDF
    Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature. Methods: We sought to perform a ‘re-executability survey’ to evaluate the recent neuroimaging literature with an eye toward seeing if the technical aspects of our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018. Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available. Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future

    Data sharing in neuroimaging research

    Get PDF
    Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture (EDC) methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging

    Everything Matters: The ReproNim Perspective on Reproducible Neuroimaging

    Get PDF
    There has been a recent major upsurge in the concerns about reproducibility in many areas of science. Within the neuroimaging domain, one approach is to promote reproducibility is to target the re-executability of the publication. The information supporting such re-executability can enable the detailed examination of how an initial finding generalizes across changes in the processing approach, and sampled population, in a controlled scientific fashion. ReproNim: A Center for Reproducible Neuroimaging Computation is a recently funded initiative that seeks to facilitate the “last mile” implementations of core re-executability tools in order to reduce the accessibility barrier and increase adoption of standards and best practices at the neuroimaging research laboratory level. In this report, we summarize the overall approach and tools we have developed in this domain

    A Simple Tool for Neuroimaging Data Sharing

    No full text

    Structure-centered portal for child psychiatry research

    Get PDF
    The real world needs of the clinical community require a domain-specific solution to integrate disparate information available from various web-based resources for data, materials, and tools into routine clinical and clinical research setting. We present a child-psychiatry oriented portal as an effort to deliver a knowledge environment wrapper that provides organization and integration of multiple information and data sources. Organized semantically by resource context, the portal groups information sources by context type, and permits the user to interactively narrow or broaden the scope of the information resources that are available and relevant to the specific context. The overall objective of the portal is to bring information from multiple complex resources into a simple single uniform framework and present it to the user in a single window format
    corecore