48 research outputs found

    Hepatite Fulminante como Primeira Apresentação da Doença de Wilson

    Get PDF
    A doença de Wilson Ă© uma rara patologia, porĂ©m, que engloba 6–12% dos pacientes com indicação de transplante hepĂĄtico de urgĂȘncia. As principais manifestaçÔes, alĂ©m de hepĂĄticas, sĂŁo as neurolĂłgicas e psiquiĂĄtricas, sendo mais raro a evolução com hepatite fulminante sem sintomas neuropsiquiĂĄtricos. Apesar da urgĂȘncia, o prognĂłstico para os pacientes pĂłs-transplante Ă©, em mĂ©dia, 85% de sobrevivĂȘncia em cinco anos. Neste relato, Ă© apresentado o caso de uma paciente  mulher, 18 anos de idade, com inĂ­cio de dor abdominal, icterĂ­cia e colĂșria com evolução para hepatite fulminante e necessidade de transplante hepĂĄtico de urgĂȘncia. A paciente evoluiu no pĂłs-operatĂłrio com choque sĂ©ptico devido encefalite herpĂ©tica, Ășlcera duodenal com sangramento ativo e pseudoaneurisma de artĂ©ria hepĂĄtica. Apesar das medidas para estabilização e solicitação, novamente, de um transplante, a paciente evoluiu para Ăłbito

    Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis

    Get PDF
    Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently

    Observations of 4U 1626-67 with the Imaging X-ray Polarimetry Explorer

    Get PDF
    We present measurements of the polarization of X-rays in the 2-8 keV band from the pulsar in the ultracompact low mass X-ray binary 4U1626-67 using data from the Imaging X-ray Polarimetry Explorer (IXPE). The 7.66 s pulsations were clearly detected throughout the IXPE observations as well as in the NICER soft X-ray observations, which we use as the basis for our timing analysis and to constrain the spectral shape over 0.4-10 keV energy band. Chandra HETGS high-resolution X-ray spectra were also obtained near the times of the IXPE observations for firm spectral modeling. We find an upper limit on the pulse-averaged linear polarization of <4% (at 95% confidence). Similarly, there was no significant detection of polarized flux in pulse phase intervals when subdividing the bandpass by energy. However, spectropolarimetric modeling over the full bandpass in pulse phase intervals provide a marginal detection of polarization of the power-law spectral component at the 4.8 +/- 2.3% level (90% confidence). We discuss the implications concerning the accretion geometry onto the pulsar, favoring two-component models of the pulsed emission.Comment: 19 pages, 7 figures, 7 tables; accepted for publication in the Astrophysical Journa

    X-ray pulsar GRO J1008−-57 as an orthogonal rotator

    Full text link
    X-ray polarimetry is a unique way to probe geometrical configuration of highly-magnetized accreting neutron stars (X-ray pulsars). GRO J1008−-57 is the first transient X-ray pulsar observed at two different flux levels by the Imaging X-ray Polarimetry Explorer (IXPE) during its outburst in November 2022. The polarization properties were found to be independent of the source luminosity, with the polarization degree varying between non-detection to about 15% over the pulse phase. Fitting the phase-resolved spectro-polarimetric data with the rotating vector model allowed us to estimate the pulsar inclination (130 deg, which is in good agreement with the orbital inclination), the position angle (75 deg) of the pulsar spin axis, and the magnetic obliquity (74 deg). This makes GRO J1008−-57 the first confidently identified X-ray pulsar as a nearly orthogonal rotator. The results are discussed in the context of the neutron star atmosphere models and theories of pulsars' axis alignment.Comment: 11 pages, 7 figures, submitted to A&A. arXiv admin note: text overlap with arXiv:2209.0244

    X-ray polarimetry of the accreting pulsar GX 301-2

    Full text link
    The phase- and energy-resolved polarization measurements of accreting X-ray pulsars (XRPs) allow us to test different theoretical models of their emission, as well as to provide an avenue to determine the emission region geometry. We present the results of the observations of the XRP GX 301-2 performed with the Imaging X-ray Polarimetry Explorer (IXPE). GX 301-2 is a persistent XRP with one of the longest known spin periods of ~680 s. A massive hyper-giant companion star Wray 977 supplies mass to the neutron star via powerful stellar winds. We do not detect significant polarization in the phase-averaged data using spectro-polarimetric analysis, with the upper limit on the polarization degree (PD) of 2.3% (99% confidence level). Using the phase-resolved spectro-polarimetric analysis we get a significant detection of polarization (above 99% c.l.) in two out of nine phase bins and marginal detection in three bins, with a PD ranging between ~3% and ~10%, and a polarization angle varying in a very wide range from ~0 deg to ~160 deg. Using the rotating vector model we obtain constraints on the pulsar geometry using both phase-binned and unbinned analysis getting excellent agreement. Finally, we discuss possible reasons for a low observed polarization in GX 301-2.Comment: 10 pages, 10 figures, submitted to A&

    IXPE Observations of the Quintessential Wind-accreting X-Ray Pulsar Vela X-1

    Get PDF
    The radiation from accreting X-ray pulsars was expected to be highly polarized, with some estimates for the polarization degree of up to 80%. However, phase-resolved and energy-resolved polarimetry of X-ray pulsars is required in order to test different models and to shed light on the emission processes and the geometry of the emission region. Here we present the first results of the observations of the accreting X-ray pulsar Vela X-1 performed with the Imaging X-ray Polarimetry Explorer. Vela X-1 is considered to be the archetypal example of a wind-accreting, high-mass X-ray binary system, consisting of a highly magnetized neutron star accreting matter from its supergiant stellar companion. The spectropolarimetric analysis of the phase-averaged data for Vela X-1 reveals a polarization degree (PD) of 2.3% ± 0.4% at the polarization angle (PA) of −47.°3 ± 5.°4. A low PD is consistent with the results obtained for other X-ray pulsars and is likely related to the inverse temperature structure of the neutron star atmosphere. The energy-resolved analysis shows the PD above 5 keV reaching 6%–10% and a ∌90° difference in the PA compared to the data in the 2–3 keV range. The phase-resolved spectropolarimetric analysis finds a PD in the range 0%–9% with the PA varying between −80° and 40°

    A polarimetrically oriented X-ray stare at the accreting pulsar EXO 2030+375

    Full text link
    Accreting X-ray pulsars (XRPs) are presumably ideal targets for polarization measurements, as their high magnetic field strength is expected to polarize the emission up to a polarization degree of ~80%. However, such expectations are being challenged by recent observations of XRPs with the Imaging X-ray Polarimeter Explorer (IXPE). Here we report on the results of yet another XRP, EXO 2030+375, observed with IXPE and contemporarily monitored with Insight-HXMT and SRG/ART-XC. In line with recent results obtained with IXPE for similar sources, analysis of the EXO 2030+375 data returns a low polarization degree of 0%-3% in the phase-averaged study and variation in the range 2%-7% in the phase-resolved study. Using the rotating vector model we constrain the geometry of the system and obtain a value for the magnetic obliquity of ~60∘60^{\circ}. Considering also the estimated pulsar inclination of ~130∘130^{\circ}, this indicates that the magnetic axis swings close to the observer line of sight. Our joint polarimetric, spectral and timing analysis hint to a complex accreting geometry where magnetic multipoles with asymmetric topology and gravitational light bending significantly affect the observed source behavior.Comment: A&A accepted. Proofs versio

    The IXPE View of GRB 221009A

    Get PDF
    We present the IXPE observation of GRB 221009A, which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after traveling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on October 11 to observe, for the first time, the 2–8 keV X-ray polarization of a GRB afterglow. We set an upper limit to the polarization degree of the afterglow emission of 13.8% at a 99% confidence level. This result provides constraints on the jet opening angle and the viewing angle of the GRB, or alternatively, other properties of the emission region. Additionally, IXPE captured halo-rings of dust-scattered photons that are echoes of the GRB prompt emission. The 99% confidence level upper limit to the prompt polarization degree depends on the background model assumption, and it ranges between ∌55% and ∌82%. This single IXPE pointing provides both the first assessment of X-ray polarization of a GRB afterglow and the first GRB study with polarization observations of both the prompt and afterglow phases

    Discovery of X-ray polarization angle rotation in active galaxy Mrk 421

    Full text link
    The magnetic field conditions in astrophysical relativistic jets can be probed by multiwavelength polarimetry, which has been recently extended to X-rays. For example, one can track how the magnetic field changes in the flow of the radiating particles by observing rotations of the electric vector position angle Κ\Psi. Here we report the discovery of a Κx\Psi_{\mathrm x} rotation in the X-ray band in the blazar Mrk 421 at an average flux state. Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of 4-6 and 7-9 June 2022, Κx\Psi_{\mathrm x} rotated in total by ≄360∘\geq360^\circ. Over the two respective date ranges, we find constant, within uncertainties, rotation rates (80±980 \pm 9 and 91±8∘/day91 \pm 8 ^\circ/\rm day) and polarization degrees (Πx=10%±1%\Pi_{\mathrm x}=10\%\pm1\%). Simulations of a random walk of the polarization vector indicate that it is unlikely that such rotation(s) are produced by a stochastic process. The X-ray emitting site does not completely overlap the radio/infrared/optical emission sites, as no similar rotation of Κ\Psi was observed in quasi-simultaneous data at longer wavelengths. We propose that the observed rotation was caused by a helical magnetic structure in the jet, illuminated in the X-rays by a localized shock propagating along this helix. The optically emitting region likely lies in a sheath surrounding an inner spine where the X-ray radiation is released
    corecore