133 research outputs found

    Stabilisation, bordism and embedded spheres in 4--manifolds

    Full text link
    It is one of the most important facts in 4-dimensional topology that not every spherical homology class of a 4-manifold can be represented by an embedded sphere. In 1978, M. Freedman and R. Kirby showed that in the simply connected case, many of the obstructions to constructing such a sphere vanish if one modifies the ambient 4-manifold by adding products of 2-spheres, a process which is usually called stabilisation. In this paper, we extend this result to non-simply connected 4-manifolds and show how it is related to the Spin^c-bordism groups of Eilenberg-MacLane spaces.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol2/agt-2-10.abs.htm

    Scattering Equations and Feynman Diagrams

    Get PDF
    We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in Ï•3\phi^3-theory. We also discuss the generalization to general scalar field theories with Ï•p\phi^p interactions, corresponding to polygonal graphs involving vertices of order pp. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.Comment: 18 pages, 57 figure
    • …
    corecore