12 research outputs found

    Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion

    Get PDF
    IntroductionHigh mobility group box nuclear protein 1 (HMGB1) is a DNA nuclear binding protein that has recently been shown to be an early trigger of sterile inflammation in animal models of trauma-hemorrhage via the activation of the Toll-like-receptor 4 (TLR4) and the receptor for the advanced glycation endproducts (RAGE). However, whether HMGB1 is released early after trauma hemorrhage in humans and is associated with the development of an inflammatory response and coagulopathy is not known and therefore constitutes the aim of the present study.MethodsOne hundred sixty eight patients were studied as part of a prospective cohort study of severe trauma patients admitted to a single Level 1 Trauma center. Blood was drawn within 10 minutes of arrival to the emergency room before the administration of any fluid resuscitation. HMGB1, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, von Willebrand Factor (vWF), angiopoietin-2 (Ang-2), Prothrombin time (PT), prothrombin fragments 1+2 (PF1+2), soluble thrombomodulin (sTM), protein C (PC), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA) and D-Dimers were measured using standard techniques. Base deficit was used as a measure of tissue hypoperfusion. Measurements were compared to outcome measures obtained from the electronic medical record and trauma registry.ResultsPlasma levels of HMGB1 were increased within 30 minutes after severe trauma in humans and correlated with the severity of injury, tissue hypoperfusion, early posttraumatic coagulopathy and hyperfibrinolysis as well with a systemic inflammatory response and activation of complement. Non-survivors had significantly higher plasma levels of HMGB1 than survivors. Finally, patients who later developed organ injury, (acute lung injury and acute renal failure) had also significantly higher plasma levels of HMGB1 early after trauma.ConclusionsThe results of this study demonstrate for the first time that HMGB1 is released into the bloodstream early after severe trauma in humans. The release of HMGB1 requires severe injury and tissue hypoperfusion, and is associated with posttraumatic coagulation abnormalities, activation of complement and severe systemic inflammatory response

    Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study

    Get PDF
    The purpose of this study was to re-evaluate the findings of a smaller cohort study on the functional definition and characteristics of acute traumatic coagulopathy (ATC). We also aimed to identify the threshold values for the most accurate identification of ATC and prediction of massive transfusion (MT) using rotational thromboelastometry (ROTEM) assays. In this prospective international multicentre cohort study, adult trauma patients who met the local criteria for full trauma team activation from four major trauma centres were included. Blood was collected on arrival to the emergency department and analyzed with laboratory international normalized ratio (INR), fibrinogen concentration and two ROTEM assays (EXTEM and FIBTEM). ATC was defined as laboratory INR >1.2. Transfusion requirements of ≥10 units of packed red blood cells within 24 hours were defined as MT. Performance of the tests were evaluated by receiver operating characteristic curves, and calculation of area under the curve (AUC). Optimal cutoff points were estimated based on Youden index. In total, 808 patients were included in the study. Among the ROTEM parameters, the largest AUCs were found for the clot amplitude (CA) 5 value in both the EXTEM and FIBTEM assays. EXTEM CA5 threshold value of ≤37 mm had a detection rate of 66.3% for ATC. An EXTEM CA5 threshold value of ≤40 mm predicted MT in 72.7%. FIBTEM CA5 threshold value of ≤8 mm detected ATC in 67.5%, and a FIBTEM CA5 threshold value ≤9 mm predicted MT in 77.5%. Fibrinogen concentration ≤1.6 g/L detected ATC in 73.6% and a fibrinogen concentration ≤1.90 g/L predicted MT in 77.8%. Patients with either an EXTEM or FIBTEM CA5 below the optimum detection threshold for ATC received significantly more packed red blood cells and plasma. This study confirms previous findings of ROTEM CA5 as a valid marker for ATC and predictor for MT. With optimum threshold for EXTEM CA5 ≤ 40 mm and FIBTEM CA5 ≤ 9 mm, sensitivity is 72.7% and 77.5% respectively. Future investigations should evaluate the role of repeated viscoelastic testing in guiding haemostatic resuscitation in traum

    The Glycocalyx and Trauma: A Review

    No full text
    In the United States trauma is the leading cause of mortality among those under the age of 45, claiming approximately 192,000 lives each year. Significant personal disability, lost productivity, and long-term healthcare needs are common and contribute 580 billion dollars in economic impact each year. Improving resuscitation strategies and the early acute care of trauma patients has the potential to reduce the pathological sequelae of combined exuberant inflammation and immune suppression that can co-exist, or occur temporally, and adversely affect outcomes. The endothelial and epithelial glycocalyx has emerged as an important participant in both inflammation and immunomodulation. Constituents of the glycocalyx have been used as biomarkers of injury severity and have the potential to be target(s) for therapeutic interventions aimed at immune modulation. In this review, we provide a contemporary understanding of the physiologic structure and function of the glycocalyx and its role in traumatic injury with a particular emphasis on lung injury.Wo

    Role of Small GTPases and αvβ5 Integrin in Pseudomonas aeruginosa–Induced Increase in Lung Endothelial Permeability

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe pneumonia associated with airspace flooding with protein-rich edema in critically ill patients. The type III secretion system is a major virulence factor and contributes to dissemination of P. aeruginosa. However, it is still unknown which particular bacterial toxin and which cellular pathways are responsible for the increase in lung endothelial permeability induced by P. aeruginosa. Thus, the first objective of this study was to determine the mechanisms by which this species causes an increase in lung endothelial permeability. The results showed that ExoS and ExoT, two of the four known P. aeruginosa type III cytotoxins, were primarily responsible for bacterium-induced increases in protein permeability across the lung endothelium via an inhibition of Rac1 and an activation of the RhoA signaling pathway. In addition, inhibition of the αvβ5 integrin, a central regulator of lung vascular permeability, prevented these P. aeruginosa–mediated increases in albumin flux due to endothelial permeability. Finally, prior activation of the stress protein response or adenoviral gene transfer of the inducible heat shock protein Hsp72 also inhibited the damaging effects of P. aeruginosa on the barrier function of lung endothelium. Taken together, these results demonstrate the critical role of the RhoA/αvβ5 integrin pathway in mediating P. aeruginosa–induced lung vascular permeability. In addition, activation of the stress protein response with pharmacologic inhibitors of Hsp90 may protect lungs against P. aeruginosa–induced permeability changes

    Exoenzyme Y Contributes to End-Organ Dysfunction Caused by Pseudomonas aeruginosa Pneumonia in Critically Ill Patients: An Exploratory Study

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen that causes pneumonia in immunocompromised and intensive care unit (ICU) patients. During host infection, P. aeruginosa upregulates the type III secretion system (T3SS), which is used to intoxicate host cells with exoenzyme (Exo) virulence factors. Of the four known Exo virulence factors (U, S, T and Y), ExoU has been shown in prior studies to associate with high mortality rates. Preclinical studies have shown that ExoY is an important edema factor in lung infection caused by P. aeruginosa, although its importance in clinical isolates of P. aeruginosa is unknown. We hypothesized that expression of ExoY would be highly prevalent in clinical isolates and would significantly contribute to patient morbidity secondary to P. aeruginosa pneumonia. A single-center, prospective observational study was conducted at the University of Alabama at Birmingham Hospital. Mechanically ventilated ICU patients with a bronchoalveolar lavage fluid culture positive for P. aeruginosa were included. Enrolled patients were followed from ICU admission to discharge and clinical P. aeruginosa isolates were genotyped for the presence of exoenzyme genes. Ninety-nine patients were enrolled in the study. ExoY was present in 93% of P. aeruginosa clinical isolates. Moreover, ExoY alone (ExoY+/ExoU−) was present in 75% of P. aeruginosa isolates, compared to 2% ExoU alone (ExoY−/ExoU+). We found that bacteria isolated from human samples expressed active ExoY and ExoU, and the presence of ExoY in clinical isolates was associated with end-organ dysfunction. This is the first study we are aware of that demonstrates that ExoY is important in clinical outcomes secondary to nosocomial pneumonia

    International external validation study of the 2014 European society of cardiology guidelines on sudden cardiac death prevention in hypertrophic cardiomyopathy (EVIDENCE-HCM)

    Get PDF
    BACKGROUND: Identification of people with hypertrophic cardiomyopathy (HCM) who are at risk of sudden cardiac death (SCD) and require a prophylactic implantable cardioverter defibrillator is challenging. In 2014, the European Society of Cardiology proposed a new risk stratification method based on a risk prediction model (HCM Risk-SCD) that estimates the 5-year risk of SCD. The aim was to externally validate the 2014 European Society of Cardiology recommendations in a geographically diverse cohort of patients recruited from the United States, Europe, the Middle East, and Asia. METHODS: This was an observational, retrospective, longitudinal cohort study. RESULTS: The cohort consisted of 3703 patients. Seventy three (2%) patients reached the SCD end point within 5 years of follow-up (5-year incidence, 2.4% [95% confidence interval {CI}, 1.9-3.0]). The validation study revealed a calibration slope of 1.02 (95% CI, 0.93-1.12), C-index of 0.70 (95% CI, 0.68-0.72), and D-statistic of 1.17 (95% CI, 1.05-1.29). In a complete case analysis (n= 2147; 44 SCD end points at 5 years), patients with a predicted 5-year risk of <4% (n=1524; 71%) had an observed 5-year SCD incidence of 1.4% (95% CI, 0.8-2.2); patients with a predicted risk of ≥6% (n=297; 14%) had an observed SCD incidence of 8.9% (95% CI, 5.96-13.1) at 5 years. For every 13 (297/23) implantable cardioverter defibrillator implantations in patients with an estimated 5-year SCD risk ≥6%, 1 patient can potentially be saved from SCD. CONCLUSIONS: This study confirms that the HCM Risk-SCD model provides accurate prognostic information that can be used to target implantable cardioverter defibrillator therapy in patients at the highest risk of SCD

    International external validation study of the 2014 European society of cardiology guidelines on sudden cardiac death prevention in hypertrophic cardiomyopathy (EVIDENCE-HCM)

    Get PDF
    textabstractBACKGROUND: Identification of people with hypertrophic cardiomyopathy (HCM) who are at risk of sudden cardiac death (SCD) and require a prophylactic implantable cardioverter defibrillator is challenging. In 2014, the European Society of Cardiology proposed a new risk stratification method based on a risk prediction model (HCM Risk-SCD) that estimates the 5-year risk of SCD. The aim was to externally validate the 2014 European Society of Cardiology recommendations in a geographically diverse cohort of patients recruited from the United States, Europe, the Middle East, and Asia. METHODS: This was an observational, retrospective, longitudinal cohort study. RESULTS: The cohort consisted of 3703 patients. Seventy three (2%) patients reached the SCD end point within 5 years of follow-up (5-year incidence, 2.4% [95% confidence interval {CI}, 1.9-3.0]). The validation study revealed a calibration slope of 1.02 (95% CI, 0.93-1.12), C-index of 0.70 (95% CI, 0.68-0.72), and D-statistic of 1.17 (95% CI, 1.05-1.29). In a complete case analysis (n= 2147; 44 SCD end points at 5 years), patients with a predicted 5-year risk of <4% (n=1524; 71%) had an observed 5-year SCD incidence of 1.4% (95% CI, 0.8-2.2); patients with a predicted risk of ≥6% (n=297; 14%) had an observed SCD incidence of 8.9% (95% CI, 5.96-13.1) at 5 years. For every 13 (297/23) implantable cardioverter defibrillator implantations in patients with an estimated 5-year SCD risk ≥6%, 1 patient can potentially be saved from SCD. CONCLUSIONS: This study confirms that the HCM Risk-SCD model provides accurate prognostic information that can be used to target implantable cardioverter defibrillator therapy in patients at the highest risk of SCD
    corecore