110 research outputs found

    TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription

    Get PDF
    TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved

    Tasmania’s child and family centres: a place-based early childhood services model for families and children from pregnancy to age five

    Get PDF
    Tasmania’s child and family centres (Centres) provide a single entry point to early childhood services (ECS) for children and families living in amongst the most disadvantaged communities in Australia. This study investigated the impact of Centres on parents’ use and experiences of ECS using a mixed methods approach. The results showed that Centre users made more use of ECS than did non-users. Centre users also rated their experiences of ECS more positively than non-users. For example, Centre users were more likely to report that ECS were convenient and close, committed to helping, and worked closely with one another. Centre users identified Centres as informal, accessible, responsive, nonjudgemental and supportive places where they felt valued, respected and safe. Parents experienced Centres as welcoming places that were helping them to develop positive child, family, school and community connections. These qualities appeared critical for facilitating parental access and engagement in ECS

    The Etiology of Multiple Sclerosis: Genetic Evidence for the Involvement of the Human Endogenous Retrovirus HERV-Fc1

    Get PDF
    We have investigated the role of human endogenous retroviruses in multiple sclerosis by analyzing the DNA of patients and controls in 4 cohorts for associations between multiple sclerosis and polymorphisms near viral restriction genes or near endogenous retroviral loci with one or more intact or almost-intact genes. We found that SNPs in the gene TRIM5 were inversely correlated with disease. Conversely, SNPs around one retroviral locus, HERV-Fc1, showed a highly significant association with disease. The latter association was limited to a narrow region that contains no other known genes. We conclude that HERV-Fc1 and TRIM5 play a role in the etiology of multiple sclerosis. If these results are confirmed, they point to new modes of treatment for multiple sclerosis

    The Ustilago maydis Effector Pep1 Suppresses Plant Immunity by Inhibition of Host Peroxidase Activity

    Get PDF
    The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1) as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H2O2 strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction

    Antimicrobial proteins and polypeptides in pulmonary innate defence

    Get PDF
    Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future

    The role of nuclear technologies in the diagnosis and control of livestock diseases—a review

    Full text link
    • …
    corecore