23,529 research outputs found
Lattice vibrations and structural instability in Cesium near the cubic to tetragonal transition
Under pressure cesium undergoes a transition from a high-pressure fcc phase
(Cs-II) to a collapsed fcc phase (Cs-III) near 4.2GPa. At 4.4GPa there follows
a transition to the tetragonal Cs-IV phase. In order to investigate the lattice
vibrations in the fcc phase and seek a possible dynamical instability of the
lattice, the phonon spectra of fcc-Cs at volumes near the III-IV transition are
calculated using Savrasov's density functional linear-response LMTO method.
Compared with quasiharmonic model calculations including non-central
interatomic forces up to second neighbours, at the volume (
is the experimental volume of bcc-Cs with =6.048{\AA}), the
linear-response calculations show soft intermediate wavelength
phonons. Similar softening is also observed for
short wavelength and phonons and intermediate
wavelength phonons. The Born-von K\'{a}rm\'{a}n analysis of
dispersion curves indicates that the interplanar force constants exhibit
oscillating behaviours against plane spacing and the large softening of
intermediate wavelength phonons results from a
negative (110)-interplanar force-constant . The frequencies of the
phonons with around 1/3 become imaginary
and the fcc structure becomes dynamically unstable for volumes below .
It is suggested that superstructures corresponding to the
soft mode should be present as a precursor of tetragonal Cs-IV structure.Comment: 12 pages, 5 figure
Universality classes and crossover behaviors in non-Abelian directed sandpiles
We study universality classes and crossover behaviors in non-Abelian directed
sandpile models, in terms of the metastable pattern analysis. The non-Abelian
property induces spatially correlated metastable patterns, characterized by the
algebraic decay of the grain density along the propagation direction of an
avalanche. Crossover scaling behaviors are observed in the grain density due to
the interplay between the toppling randomness and the parity of the threshold
value. In the presence of such crossovers, we show that the broadness of the
grain distribution plays a crucial role in resolving the ambiguity of the
universality class. Finally, we claim that the metastable pattern analysis is
important as much as the conventional analysis of avalanche dynamics.Comment: 10 pages, 7 figures, 1 table; published in PRE as the full paper of
PRL v101, 218001 (2008
Recommended from our members
White matter hyperintensities and within-person variability in community-dwelling adults aged 60–64 years
Estimates of white matter hyperintensities (WMH) derived from T2-weighted MRI were investigated in relation to cognitive performance in 469 healthy community-dwelling adults aged 60–64 years. Frontal lobe WMH but not WMH from other brain regions (temporal, parietal, and occipital lobes, anterior and posterior horn, periventricular body) were associated with elevated within-person reaction time (RT) variability (trial to trial fluctuations in RT performance) but not performance on several other cognitive tasks including psychomotor speed, memory, and global cognition. The findings are consistent with the view that elevated within-person variability is related to neurobiological disturbance, and that attentional mechanisms supported by the frontal cortex play a key role in this type of variability
A stochastic theory for temporal fluctuations in self-organized critical systems
A stochastic theory for the toppling activity in sandpile models is
developed, based on a simple mean-field assumption about the toppling process.
The theory describes the process as an anti-persistent Gaussian walk, where the
diffusion coefficient is proportional to the activity. It is formulated as a
generalization of the It\^{o} stochastic differential equation with an
anti-persistent fractional Gaussian noise source. An essential element of the
theory is re-scaling to obtain a proper thermodynamic limit, and it captures
all temporal features of the toppling process obtained by numerical simulation
of the Bak-Tang-Wiesenfeld sandpile in this limit.Comment: 9 pages, 4 figure
A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori
We present an experimental and numerical study of the effects of decoherence
on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM)
tori in its phase space. Atoms are prepared in a caesium magneto-optical trap
at temperatures and densities which necessitate a quantum description. This
real quantum system is coupled to the environment via spontaneous emission. The
degree of coupling is varied and the effects of this coupling on the quantum
coherence of the system are studied. When the classical diffusion through a
partially broken torus is < hbar, diffusion of quantum particles is inhibited.
We find that increasing decoherence via spontaneous emission increases the
transport of quantum particles through the boundary.Comment: 19 pages including 6 figure
Syndrome of hereditary tyrosinemia in mink
International audienc
Modeling temporal fluctuations in avalanching systems
We demonstrate how to model the toppling activity in avalanching systems by
stochastic differential equations (SDEs). The theory is developed as a
generalization of the classical mean field approach to sandpile dynamics by
formulating it as a generalization of Itoh's SDE. This equation contains a
fractional Gaussian noise term representing the branching of an avalanche into
small active clusters, and a drift term reflecting the tendency for small
avalanches to grow and large avalanches to be constricted by the finite system
size. If one defines avalanching to take place when the toppling activity
exceeds a certain threshold the stochastic model allows us to compute the
avalanche exponents in the continum limit as functions of the Hurst exponent of
the noise. The results are found to agree well with numerical simulations in
the Bak-Tang-Wiesenfeld and Zhang sandpile models. The stochastic model also
provides a method for computing the probability density functions of the
fluctuations in the toppling activity itself. We show that the sandpiles do not
belong to the class of phenomena giving rise to universal non-Gaussian
probability density functions for the global activity. Moreover, we demonstrate
essential differences between the fluctuations of total kinetic energy in a
two-dimensional turbulence simulation and the toppling activity in sandpiles.Comment: 14 pages, 11 figure
Boundary effects in a random neighbor model of earthquakes
We introduce spatial inhomogeneities (boundaries) in a random neighbor
version of the Olami, Feder and Christensen model [Phys. Rev. Lett. 68, 1244
(1992)] and study the distributions of avalanches starting both from the bulk
and from the boundaries of the system. Because of their clear geophysical
interpretation, two different boundary conditions have been considered (named
free and open, respectively). In both cases the bulk distribution is described
by the exponent . Boundary distributions are instead
characterized by two different exponents and , for free and open boundary conditions, respectively. These
exponents indicate that the mean-field behavior of this model is correctly
described by a recently proposed inhomogeneous form of critical branching
process.Comment: 6 pages, 2 figures ; to appear on PR
Significance of Off-Center Rattling for Emerging Low-lying THz Modes in type-I Clathrates
We show that the distinct differences of low-lying THz-frequency dynamics
between type-I clathrates with on-center and off-center guest ions naturally
follow from a theoretical model taking into account essential features of the
dynamics of rattling guest ions. Our model analysis demonstrates the drastic
change from the conventional dynamics shown by on-center systems to the
peculiar dynamics of off-center systems in a unified manner. We claim that
glass-like plateau thermal conductivities observed for off-center systems stem
from the flattening of acoustic phonon dispersion in the regime |k|<|G|/4. The
mechanism is applicable to other systems such as glasses or relaxers
- …