23,797 research outputs found
An assessment of two decades of contaminant monitoring in the Nation’s Coastal Zone.
Executive Summary:
Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarine and coastal pollutant monitoring effort conducted in the United States that is national in scope each year. Hundreds of scientific journal articles and technical reports based on Mussel Watch data have been written; however, this report is the first that presents local, regional and national findings
across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public.
Pollution often starts at the local scale where high concentrations point to a specific source of contamination, yet some contaminants such as PCBs are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Findings presented here showed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and
federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas.
In addition to monitoring throughout the nation’s coastal shores and Great Lakes, Mussel Watch samples are stored in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of
concern. For example, there is heightened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenyl ethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminant threats.
We hope you find this document to be valuable, and that
you continue to look towards the Mussel Watch Program
for information on the condition of your coastal waters. (PDF contains 118 pages
On R-duals and the duality principle in Gabor analysis
The concept of R-duals of a frame was introduced by Casazza, Kutyniok and
Lammers in 2004, with the motivation to obtain a general version of the duality
principle in Gabor analysis. For tight Gabor frames and Gabor Riesz bases the
three authors were actually able to show that the duality principle is a
special case of general results for R-duals. In this paper we introduce various
alternative R-duals, with focus on what we call R-duals of type II and III. We
show how they are related and provide characterizations of the R-duals of type
II and III. In particular, we prove that for tight frames these classes
coincide with the R-duals by Casazza et el., which is desirable in the sense
that the motivating case of tight Gabor frames already is well covered by these
R-duals. On the other hand, all the introduced types of R-duals generalize the
duality principle for larger classes of Gabor frames than just the tight frames
and the Riesz bases; in particular, the R-duals of type III cover the duality
principle for all Gabor frames
White matter hyperintensities and within-person variability in community-dwelling adults aged 60–64 years
Estimates of white matter hyperintensities (WMH) derived from T2-weighted MRI were investigated in relation to cognitive performance in 469 healthy community-dwelling adults aged 60–64 years. Frontal lobe WMH but not WMH from other brain regions (temporal, parietal, and occipital lobes, anterior and posterior horn, periventricular body) were associated with elevated within-person reaction time (RT) variability (trial to trial fluctuations in RT performance) but not performance on several other cognitive tasks including psychomotor speed, memory, and global cognition. The findings are consistent with the view that elevated within-person variability is related to neurobiological disturbance, and that attentional mechanisms supported by the frontal cortex play a key role in this type of variability
Transitions in non-conserving models of Self-Organized Criticality
We investigate a random--neighbours version of the two dimensional
non-conserving earthquake model of Olami, Feder and Christensen [Phys. Rev.
Lett. {\bf 68}, 1244 (1992)]. We show both analytically and numerically that
criticality can be expected even in the presence of dissipation. As the
critical level of conservation, , is approached, the cut--off of the
avalanche size distribution scales as . The
transition from non-SOC to SOC behaviour is controlled by the average branching
ratio of an avalanche, which can thus be regarded as an order
parameter of the system. The relevance of the results are discussed in
connection to the nearest-neighbours OFC model (in particular we analyse the
relevance of synchronization in the latter).Comment: 8 pages in latex format; 5 figures available upon reques
Bridging planets and stars using scaling laws in anelastic spherical shell dynamos
Dynamos operating in the interiors of rapidly rotating planets and low-mass
stars might belong to a similar category where rotation plays a vital role. We
quantify this similarity using scaling laws. We analyse direct numerical
simulations of Boussinesq and anelastic spherical shell dynamos. These dynamos
represent simplified models which span from Earth-like planets to rapidly
rotating low-mass stars. We find that magnetic field and velocity in these
dynamos are related to the available buoyancy power via a simple power law
which holds over wide variety of control parameters.Comment: 2 pages; Proceedings of IAUS 302: Magnetic fields throughout stellar
evolution (August 2013, Biarritz, France
Examining the crossover from hadronic to partonic phase in QCD
It is argued that, due to the existence of two vacua -- perturbative and
physical -- in QCD, the mechanism for the crossover from hadronic to partonic
phase is hard to construct. The challenge is: how to realize the transition
between the two vacua during the gradual crossover of the two phases. A
possible solution of this problem is proposed and a mechanism for crossover,
consistent with the principle of QCD, is constructed. The essence of this
mechanism is the appearance and growing up of a kind of grape-shape
perturbative vacuum inside the physical one. A dynamical percolation model
based on a simple dynamics for the delocalization of partons is constructed to
exhibit this mechanism. The crossover from hadronic matter to sQGP as well as
the transition from sQGP to wQGP in the increasing of temperature is
successfully described by using this model with a temperature dependent
parameter.Comment: 4 pages, 4 figure
Conditional Hardness of Earth Mover Distance
The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension.
In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results:
- Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time.
- Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions.
- Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions
Scaling of cluster heterogeneity in percolation transitions
We investigate a critical scaling law for the cluster heterogeneity in
site and bond percolations in -dimensional lattices with . The
cluster heterogeneity is defined as the number of distinct cluster sizes. As an
occupation probability increases, the cluster size distribution evolves
from a monodisperse distribution to a polydisperse one in the subcritical
phase, and back to a monodisperse one in the supercritical phase. We show
analytically that diverges algebraically approaching the percolation
critical point as with the critical exponent
associated with the characteristic cluster size. Interestingly, its
finite-size-scaling behavior is governed by a new exponent where is the fractal dimension of the critical percolating
cluster and is the correlation length exponent. The corresponding scaling
variable defines a singular path to the critical point. All results are
confirmed by numerical simulations.Comment: 4 pages, 4 figure
77Se NMR Investigation of the K(x)Fe(2-y)Se(2) High Tc Superconductor (Tc=33K)
We report a comprehensive 77Se NMR study of the structural, magnetic, and
superconducting properties of a single crystalline sample of the newly
discovered FeSe-based high temperature superconductor K(x)Fe(2-y)Se(2) (Tc=33K)
in a broad temperature range up to 290 K. We will compare our results with
those reported for FeSe (Tc=9K) and FeAs-based high Tc systems.Comment: Final versio
- …