5,824 research outputs found

    Plasmon-Emitter Interactions at the Nanoscale

    Full text link
    Plasmon-emitter interactions are of paramount importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory progressively deteriorates due to its neglect of quantum mechanical effects such as nonlocality, electronic spill-out, and Landau damping. Here, we show how this neglect can be remedied by presenting a unified theoretical treatment of mesoscopic electrodynamics grounded on the framework of Feibelman dd-parameters. Crucially, our technique naturally incorporates nonclassical resonance shifts and surface-enabled Landau damping - a nonlocal damping effect - which have a dramatic impact on the amplitude and spectral distribution of plasmon-emitter interactions. We consider a broad array of plasmon-emitter interactions ranging from dipolar and multipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and enhancement of two-photon transitions. The formalism presented here gives a complete account of both plasmons and plasmon-emitter interactions at the nanoscale, constituting a simple yet rigorous and general platform to incorporate nonclassical effects in plasmon-empowered nanophotonic phenomena.Comment: 12 pages, 6 figure

    Inhibition of Nitric Oxide and Soluble Guanylyl Cyclase Signaling Affects Olfactory Neuron Activity in the Moth, \u3cem\u3eManduca sexta\u3c/em\u3e

    Get PDF
    Nitric oxide is emerging as an important modulator of many physiological processes including olfaction, yet the function of this gas in the processing of olfactory information remains poorly understood. In the antennal lobe of the moth, Manduca sexta, nitric oxide is produced in response to odor stimulation, and many interneurons express soluble guanylyl cyclase, a well-characterized nitric oxide target. We used intracellular recording and staining coupled with pharmacological manipulation of nitric oxide and soluble guanylyl cyclase to test the hypothesis that nitric oxide modulates odor responsiveness in olfactory interneurons through soluble guanylyl cyclase-dependent pathways. Nitric oxide synthase inhibition resulted in pronounced effects on the resting level of firing and the responses to odor stimulation in most interneurons. Effects ranged from bursting to strong attenuation of activity and were often accompanied by membrane depolarization coupled with a change in input resistance. Blocking nitric oxide activation of soluble guanylyl cyclase signaling mimicked the effects of nitric oxide synthase inhibitors in a subset of olfactory neurons, while other cells were differentially affected by this treatment. Together, these results suggest that nitric oxide is required for proper olfactory function, and likely acts through soluble guanylyl cyclase-dependent and -independent mechanisms in different subsets of neurons

    Characterization and Coding of Behaviorally Significant Odor Mixtures

    Get PDF
    SummaryFor animals to execute odor-driven behaviors, the olfactory system must process complex odor signals and maintain stimulus identity in the face of constantly changing odor intensities [1–5]. Surprisingly, how the olfactory system maintains identity of complex odors is unclear [6–10]. We took advantage of the plant-pollinator relationship between the Sacred Datura (Datura wrightii) and the moth Manduca sexta [11, 12] to determine how olfactory networks in this insect's brain represent odor mixtures. We combined gas chromatography and neural-ensemble recording in the moth's antennal lobe to examine population codes for the floral mixture and its fractionated components. Although the floral scent of D. wrightii comprises at least 60 compounds, only nine of those elicited robust neural responses. Behavioral experiments confirmed that these nine odorants mediate flower-foraging behaviors, but only as a mixture. Moreover, the mixture evoked equivalent foraging behaviors over a 1000-fold range in dilution, suggesting a singular percept across this concentration range. Furthermore, neural-ensemble recordings in the moth's antennal lobe revealed that reliable encoding of the floral mixture is organized through synchronized activity distributed across a population of glomerular coding units, and this timing mechanism may bind the features of a complex stimulus into a coherent odor percept

    Conformational Entropy as a Means to Control the Behavior of Poly(diketoenamine) Vitrimers In and Out of Equilibrium.

    Get PDF
    Control of equilibrium and non-equilibrium thermomechanical behavior of poly(diketoenamine) vitrimers is shown by incorporating linear polymer segments varying in molecular weight (MW) and conformational degrees of freedom into the dynamic covalent network. While increasing MW of linear segments yields a lower storage modulus at the rubbery plateau after softening above the glass transition (Tg ), both Tg and the characteristic time of stress relaxation are independently governed by the conformational entropy of the embodied linear segments. Activation energies for bond exchange in the solid state are lower for networks incorporating flexible chains; the network topology freezing temperature decreases with increasing MW of flexible linear segments but increases with increasing MW of stiff segments. Vitrimer reconfigurability is therefore influenced not only by the energetics of bond exchange for a given network density, but also the entropy of polymer chains within the network

    Polarization-based Tests of Gravity with the Stochastic Gravitational-Wave Background

    Get PDF
    The direct observation of gravitational waves with Advanced LIGO and Advanced Virgo offers novel opportunities to test general relativity in strong-field, highly dynamical regimes. One such opportunity is the measurement of gravitational-wave polarizations. While general relativity predicts only two tensor gravitational-wave polarizations, general metric theories of gravity allow for up to four additional vector and scalar modes. The detection of these alternative polarizations would represent a clear violation of general relativity. The LIGO-Virgo detection of the binary black hole merger GW170814 has recently offered the first direct constraints on the polarization of gravitational waves. The current generation of ground-based detectors, however, is limited in its ability to sensitively determine the polarization content of transient gravitational-wave signals. Observation of the stochastic gravitational-wave background, in contrast, offers a means of directly measuring generic gravitational-wave polarizations. The stochastic background, arising from the superposition of many individually unresolvable gravitational-wave signals, may be detectable by Advanced LIGO at design-sensitivity. In this paper, we present a Bayesian method with which to detect and characterize the polarization of the stochastic background. We explore prospects for estimating parameters of the background, and quantify the limits that Advanced LIGO can place on vector and scalar polarizations in the absence of a detection. Finally, we investigate how the introduction of new terrestrial detectors like Advanced Virgo aid in our ability to detect or constrain alternative polarizations in the stochastic background. We find that, although the addition of Advanced Virgo does not notably improve detection prospects, it may dramatically improve our ability to estimate the parameters of backgrounds of mixed polarization.Comment: 24 pages, 20 figures; Accepted by PRX. This version includes major changes in response to referee comments and corrects an error in Eq. E

    Neural Substrates of Attentive Listening Assessed with a Novel Auditory Stroop Task

    Get PDF
    A common explanation for the interference effect in the classic visual Stroop test is that reading a word (the more automatic semantic response) must be suppressed in favor of naming the text color (the slower sensory response). Neuroimaging studies also consistently report anterior cingulate/medial frontal, lateral prefrontal, and anterior insular structures as key components of a network for Stroop-conflict processing. It remains unclear, however, whether automatic processing of semantic information can explain the interference effect in other variants of the Stroop test. It also is not known if these frontal regions serve a specific role in visual Stroop conflict, or instead play a more universal role as components of a more generalized, supramodal executive-control network for conflict processing. To address these questions, we developed a novel auditory Stroop test in which the relative dominance of semantic and sensory feature processing is reversed. Listeners were asked to focus either on voice gender (a more automatic sensory discrimination task) or on the gender meaning of the word (a less automatic semantic task) while ignoring the conflicting stimulus feature. An auditory Stroop effect was observed when voice features replaced semantic content as the “to-be-ignored” component of the incongruent stimulus. Also, in sharp contrast to previous Stroop studies, neural responses to incongruent stimuli studied with functional magnetic resonance imaging revealed greater recruitment of conflict loci when selective attention was focused on gender meaning (semantic task) over voice gender (sensory task). Furthermore, in contrast to earlier Stroop studies that implicated dorsomedial cortex in visual conflict processing, interference-related activation in both of our auditory tasks was localized ventrally in medial frontal areas, suggesting a dorsal-to-ventral separation of function in medial frontal cortex that is sensitive to stimulus context

    Study of an Alternate Mechanism for the Origin of Fermion Generations

    Full text link
    In usual extended technicolor (ETC) theories based on the group SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}, the quarks of charge 2/3 and -1/3 and the charged leptons of all generations arise from ETC fermion multiplets transforming according to the fundamental representation. Here we investigate a different idea for the origin of SM fermion generations, in which quarks and charged leptons of different generations arise from ETC fermions transforming according to different representations of SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}. Although this mechanism would have the potential, {\it a priori}, to allow a reduction in the value of NETCN_{ETC} relative to conventional ETC models, we show that, at least in simple models, it is excluded by the fact that the technicolor sector is not asymptotically free or by the appearance of fermions with exotic quantum numbers which are not observed.Comment: 6 pages, late

    Who\u27s accessing emergency food services?

    Get PDF
    Introduction: Last year, Chittenden Emergency Food Shelf provided 1,260,517 pounds of food to over 11,000 people each month via groceries, hot meals and home delivery, supplying an average of almost 40% of food for families. CEFS seeks to improve their services and offerings by better understanding the demographics, food preference, and needs of the clients they serve. Our goal was to collect demographic and utilization data to identify areas where CEFS could enhance services and improve client access to healthful food.https://scholarworks.uvm.edu/comphp_gallery/1208/thumbnail.jp

    Topological Phases of Photonic Crystals under Crystalline Symmetries

    Full text link
    Photonic crystals (PhCs) have emerged as a popular platform for realizing various topological phases due to their flexibility and potential for device applications. In this article, we present a comprehensive classification of topological bands in one- and two dimensional photonic crystals, with and without time-reversal symmetry. Our approach exploits the symmetry representations of field eigenmodes at high-symmetry points in momentum space, allowing for the efficient design of a wide range of topological PhCs. In particular, we show that the complete classification provided here is useful for diagnosing photonic crystal analogs of obstructed atomic limits, fragile phases, and stable topological phases that include bands with Dirac points and Chern numbers
    • …
    corecore