25,907 research outputs found
Multipole Moments of Fractal Distribution of Charges
In this paper we consider the electric multipole moments of fractal
distribution of charges. To describe fractal distribution, we use the
fractional integrals. The fractional integrals are considered as approximations
of integrals on fractals. In the paper we compute the electric multipole
moments for homogeneous fractal distribution of charges.Comment: LaTeX, 11 page
Characterization of surficial units on Mars using Viking orbiter multispectral image and thermal data
Albedo and thermal property correlations of the topography of Mars were conducted with emphases upon the types and origins of materials exposed in the central equatorial region. This area displays a wide variation in color, albedo and thermal properties, and is relatively free of dust and haze. The physical, mineralogical and elemental characteristics of this area are discussed
The Top Triangle Moose
We introduce a deconstructed model that incorporates both Higgsless and
top-color mechanisms. The model alleviates the typical tension in Higgsless
models between obtaining the correct top quark mass and keeping delta-rho
small. It does so by singling out the top quark mass generation as arising from
a Yukawa coupling to an effective top-Higgs which develops a small vacuum
expectation value, while electroweak symmetry breaking results largely from a
Higgsless mechanism. As a result, the heavy partners of the SM fermions can be
light enough to be seen at the LHC.Comment: To appear in proceedings of SCGT09, Nagoya, Japan. 5 page
Spectroscopy of a synthetic trapped ion qubit
has been identified as an attractive ion for quantum
information processing due to the unique combination of its spin-1/2 nucleus
and visible wavelength electronic transitions. Using a microgram source of
radioactive material, we trap and laser-cool the synthetic = 133
radioisotope of barium II in a radio-frequency ion trap. Using the same, single
trapped atom, we measure the isotope shifts and hyperfine structure of the and
electronic transitions that are needed
for laser cooling, state preparation, and state detection of the clock-state
hyperfine and optical qubits. We also report the
electronic transition isotope shift for
the rare = 130 and 132 barium nuclides, completing the spectroscopic
characterization necessary for laser cooling all long-lived barium II isotopes
- …