23,043 research outputs found

    Asteroseismic Stellar Modelling with AIMS

    Full text link
    The goal of AIMS (Asteroseismic Inference on a Massive Scale) is to estimate stellar parameters and credible intervals/error bars in a Bayesian manner from a set of asteroseismic frequency data and so-called classical constraints. To achieve reliable parameter estimates and computational efficiency, it searches through a grid of pre-computed models using an MCMC algorithm -- interpolation within the grid of models is performed by first tessellating the grid using a Delaunay triangulation and then doing a linear barycentric interpolation on matching simplexes. Inputs for the modelling consist of individual frequencies from peak-bagging, which can be complemented with classical spectroscopic constraints. AIMS is mostly written in Python with a modular structure to facilitate contributions from the community. Only a few computationally intensive parts have been rewritten in Fortran in order to speed up calculations.Comment: 11 pages, 4 figures. Tutorial presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    MCMC Exploration of Supermassive Black Hole Binary Inspirals

    Get PDF
    The Laser Interferometer Space Antenna will be able to detect the inspiral and merger of Super Massive Black Hole Binaries (SMBHBs) anywhere in the Universe. Standard matched filtering techniques can be used to detect and characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally suited to this and other LISA data analysis problems as they are able to efficiently handle models with large dimensions. Here we compare the posterior parameter distributions derived by an MCMC algorithm with the distributions predicted by the Fisher information matrix. We find excellent agreement for the extrinsic parameters, while the Fisher matrix slightly overestimates errors in the intrinsic parameters.Comment: Submitted to CQG as a GWDAW-10 Conference Proceedings, 9 pages, 5 figures, Published Versio

    The Temperature Evolution of the Out-of-Plane Correlation Lengths of Charge-Stripe Ordered La(1.725)Sr(0.275)NiO(4)

    Full text link
    The temperature dependence of the magnetic order of stripe-ordered La(1.725)Sr(0.275)NiO(4) is investigated by neutron diffraction. Upon cooling, the widths if the magnetic Bragg peaks are observed to broaden. The degree of broadening is found to be very different for l = odd-integer and l = even-integer magnetic peaks. We argue that the observed behaviour is a result of competition between magnetic and charge order.Comment: 3 figure

    Can the frequency-dependent specific heat be measured by thermal effusion methods?

    Full text link
    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.Comment: Paper presented at the Fifth International Workshop on Complex Systems (Sendai, September, 2007), to appear in AIP Conference Proceeding

    Solar-like oscillations of semiregular variables

    Get PDF
    Oscillations of the Sun and solar-like stars are believed to be excited stochastically by convection near the stellar surface. Theoretical modeling predicts that the resulting amplitude increases rapidly with the luminosity of the star. Thus one might expect oscillations of substantial amplitudes in red giants with high luminosities and vigorous convection. Here we present evidence that such oscillations may in fact have been detected in the so-called semiregular variables, extensive observations of which have been made by amateur astronomers in the American Association for Variable Star Observers (AAVSO). This may offer a new opportunity for studying the physical processes that give rise to the oscillations, possibly leading to further information about the properties of convection in these stars.Comment: Astrophys. J. Lett., in the press. Processed with aastex and emulateap

    Damping rates and frequency corrections of Kepler LEGACY stars

    Full text link
    Linear damping rates and modal frequency corrections of radial oscillation modes in selected LEGACY main-sequence stars are estimated by means of a nonadiabatic stability analysis. The selected stellar sample covers stars observed by Kepler with a large range of surface temperatures and surface gravities. A nonlocal, time-dependent convection model is perturbed to assess stability against pulsation modes. The mixing-length parameter is calibrated to the surface-convection-zone depth of a stellar model obtained from fitting adiabatic frequencies to the LEGACY observations, and two of the nonlocal convection parameters are calibrated to the corresponding LEGACY linewidth measurements. The remaining nonlocal convection parameters in the 1D calculations are calibrated so as to reproduce profiles of turbulent pressure and of the anisotropy of the turbulent velocity field of corresponding 3D hydrodynamical simulations. The atmospheric structure in the 1D stability analysis adopts a temperature-optical-depth relation derived from 3D hydrodynamical simulations. Despite the small number of parameters to adjust, we find good agreement with detailed shapes of both turbulent pressure profiles and anisotropy profiles with depth, and with damping rates as a function of frequency. Furthermore, we find the absolute modal frequency corrections, relative to a standard adiabatic pulsation calculation, to increase with surface temperature and surface gravity.Comment: accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS); 15 pages, 8 figure
    • …
    corecore