75 research outputs found

    Can patiromer allow for intensified renin-angiotensin-aldosterone system blockade with losartan and spironolactone leading to decreased albuminuria in patients with chronic kidney disease, albuminuria and hyperkalaemia?:An open-label randomised controlled trial: MorphCKD

    Get PDF
    INTRODUCTION: Chronic kidney disease (CKD) is associated with significantly increased morbidity and mortality. No specific treatment of the underlying condition is available for the majority of patients, but ACE-inhibitors (ACE-I) and angiotensin II-receptor blockers (ARB) slows progression in albuminuric CKD. Adding a mineralocorticoid receptor-antagonist (MRA) like spironolactone has an additive effect. However, renin–angiotensin–aldosterone system (RAAS)-blockade increases the risk of hyperkalaemia which is exacerbated by the presence of CKD. Thus, hyperkalaemia may prevent optimal use of RAAS-blockade in some patients. This project hypothesises that adding a potassium binder (patiromer) allows for improved RAAS-blockade including the use of MRA, thereby reducing albuminuria in patients with albuminuric CKD where full treatment is limited by hyperkalaemia. If successful, the study may lead to improved treatment of this subgroup of patients with CKD. Furthermore, the study will examine the feasibility of potassium binders in patients with CKD. METHODS AND ANALYSIS: An open-label, randomised controlled trial including 140 patients with estimated glomerular filtration rate (eGFR) 25–60 mL/min/1.73 m(2), a urinary albumin/creatinine ratio (UACR) >500 mg/g (or 200 mg/g if diabetes mellitus) and a current or two previous plasma-potassium >4.5 mmol/L. Patients who develop hyperkaliaemia >5.5 mmol/L during a run-in phase, in which RAAS-blockade is intesified with the possible addition of spironolactone, are randomised to 12-month treatment with maximal tolerated ACE-I/ARB and spironolactone with or without patiromer. The primary endpoint is the difference in UACR measured at randomisation and 12 months compared between the two groups. Secondary endpoints include CKD progression, episodes of hyperkalaemia, blood pressure, eGFR, markers of cardiovascular disease, diet and quality of life. ETHICS AND DISSEMINATION: This study is approved by The Central Denmark Region Committees on Health Research Ethics (REFNO 1-10-72-110-20) and is registered in the EudraCT database (REFNO 2020-001595-15). Results will be presented in peer-reviewed journals, at meetings and at international conferences

    The effect of marine n-3 polyunsaturated fatty acids on heart rate variability in renal transplant recipients:a randomized controlled trial

    Get PDF
    Resting heart rate (rHR) and heart rate variability (HRV) are non-invasive measurements that predict the risk of sudden cardiac death (SCD). Marine n-3 polyunsaturated fatty acid (PUFA) supplementation may decrease rHR, increase HRV, and reduce the risk of SCD. To date, no studies have investigated the effect of marine n-3 PUFA on HRV in renal transplant recipients. In a randomized controlled trial, 132 renal transplant recipients were randomized to receive either three 1 g capsules of marine n-3 PUFA, each containing 460 mg/g EPA and 380 mg/g DHA, or control (olive oil) for 44 weeks. HRV was calculated in the time and frequency domains during a conventional cardiovascular reflex test (response to standing, deep breathing, and Valsalva maneuver) and during 2 min of resting in the supine position. There was no significant effect of marine n-3 PUFA supplementation on time-domain HRV compared with controls. rHR decreased 3.1 bpm (± 13.1) for patients receiving marine n-3 PUFA compared to 0.8 (± 11.0) in controls (p = 0.28). In the frequency domain HRV analyses, there was a significant change in response to standing in both high and low frequency measures, 2.9 (p = 0.04, 95% CI (1.1;8)) and 2.7 (p = 0.04, 95% CI (1.1;6.5)), respectively. In conclusion, 44 weeks of supplemental marine n-3 PUFAs in renal transplant recipients significantly improved the cardiac autonomic function, assessed by measuring HRV during conventional cardiovascular reflex tests

    Intake of marine n-3 polyunsaturated fatty acids and the risk of rheumatoid arthritis:Protocol for a cohort study using data from the Danish Diet, Cancer and Health cohort and Danish health registers

    Get PDF
    INTRODUCTION: Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory joint disease with multifactorial aetiology. Smoking is a well-established lifestyle risk factor, but diet may also have an impact on the risk of RA. Intake of the major marine n-3 polyunsaturated fatty acids in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been hypothesised to lower the risk of RA due to their anti-inflammatory effects, although based on limited knowledge. Therefore, we aim to investigate the associations between dietary intake of EPA and DHA and the risk of incident RA. METHODS AND ANALYSIS: A cohort study. The follow-up design will be based on data from the Danish Diet, Cancer and Health cohort, which was established between 1993 and 1997. The participants will be followed through record linkage using nationwide registers including the Danish Civil Registration System, the Danish National Patient Registry and the Danish National Prescription Registry using the unique Civil Personal Registration number. Time-to-event analyses will be conducted with RA as the outcome of interest. The participants will be followed from inclusion until date of RA diagnosis, death, emigration or end of follow-up. HRs with 95% CIs obtained using Cox proportional hazard regression models, with age as underlying time scale and adjustment for established and potential risk factors, will be used as measures of association. ETHICS AND DISSEMINATION: The study has been approved by the Data Protection Committee of Northern Jutland, Denmark (2019-87) and the North Denmark Region Committee on Health Research Ethics (N-20190031). Study results will be disseminated through peer-reviewed journals and presentations at international conferences

    The Physiological and Cardiologic Effects of Long Video Gaming Sessions in Adult Males

    Get PDF
    The effect of long gaming sessions on energy intake, caffeine intake, blood pressure, heart rate, heart rate variability, and biochemical cardiac injury markers is unknown. The objective of this exploratory study was to investigate the changes in healthy male adults during two consecutive 18-hour sedentary video gaming sessions. Nine participants were enrolled in the study. Energy intake was noted in food diaries. Heart rate variability was monitored continuously; blood pressure and cardiac injury markers were measured every three to six hours. During the 42-hour study, the participants had an energy and caffeine intake of 8004.9 kcal and 1354.4 mg, respectively. The participants had a significant decrease in energy intake in the second session (p=0.01). A strong, negative correlation was found between body mass index and total energy intake (R=–0.84, p=0.005) and waist circumference and total energy intake (R=–0.70, p=0.036) in the first session. No nightly dip in blood pressure or heart rate was observed. Based on this study, long-term adverse effects of gaming cannot be ruled out. The non-dip of HR and BP suggests that long gaming sessions could be detrimental to cardiovascular health long term

    Effect of the administration of n-3 polyunsaturated fatty acids on circulating levels of microparticles in patients with a previous myocardial infarction

    Get PDF
    Udgivelsesdato: 2008-Jun BACKGROUND: Increased levels of microparticles exposing tissue factor circulate in the blood of patients with coronary heart disease, possibly disseminating their pro-thrombotic and pro-inflammatory potential. Because diets rich in n-3 (polyunsaturated) fatty acids have been associated with reduced incidence of coronary heart disease-related events, we investigated the in vivo effects of treatments with n-3 fatty acids on levels of circulating microparticles and their tissue factor- dependent procoagulant activity in patients with a previous myocardial infarction. DESIGN AND METHODS: Forty-six post-myocardial infarction patients were assigned to receive either 5.2 g of n-3 fatty acids daily (n=23) or an olive oil placebo (n = 23) for 12 weeks. Circulating microparticles were isolated from peripheral blood. The number of microparticles, their cellular source and tissue factor antigen were determined by flow cytometry, and their procoagulant potential assayed by a fibrin generation test. RESULTS: The total number of microparticles, endothelium-derived microparticles and microparticle tissue factor antigen were not significantly different between the two groups. However, the number of platelet-derived microparticles [from a median of 431 (126-1796, range) x 10(6)/L to a median of 226 (87-677, range)] x 10(6)/L and monocyte-derived microparticles [from a median of 388 (9-1681, range) x 10(6)/L to a median of 265 (7-984, range) x 10(6)/L] in plasma were significantly (p < 0.05) decreased by n-3 fatty acids, while they were unchanged in the placebo group. Total microparticle tissue factor-procoagulant activity was also reduced in the n-3 fatty acid group compared to that in the placebo group. CONCLUSIONS: Treatment with n-3 fatty acids after myocardial infarction exerts favorable effects on levels of platelet- and monocyte-derived microparticles, thus possibly explaining some of the anti-inflammatory and anti-thrombotic properties of these natural compounds

    Omega-3 Polyunsaturated Fatty Acids and Heart Rate Variability

    Get PDF
    Omega-3 polyunsaturated fatty acids (PUFA) may modulate autonomic control of the heart because omega-3 PUFA is abundant in the brain and other nervous tissue as well as in cardiac tissue. This might partly explain why omega-3 PUFA offer some protection against sudden cardiac death (SCD). The autonomic nervous system is involved in the pathogenesis of SCD. Heart rate variability (HRV) can be used as a non-invasive marker of cardiac autonomic control and a low HRV is a predictor for SCD and arrhythmic events. Studies on HRV and omega-3 PUFA have been performed in several populations such as patients with ischemic heart disease, patients with diabetes mellitus, patients with chronic renal failure, and in healthy subjects as well as in children.. The studies have demonstrated a positive association between cellular content of omega-3 PUFA and HRV and supplementation with omega-3 PUFA seems to increase HRV which could be a possible explanation for decreased risk of arrhythmic events and SCD sometimes observed after omega-3 PUFA supplementation. However, the results are not consistent and further research is neede
    corecore