29,293 research outputs found

    Multipole Moments of Fractal Distribution of Charges

    Full text link
    In this paper we consider the electric multipole moments of fractal distribution of charges. To describe fractal distribution, we use the fractional integrals. The fractional integrals are considered as approximations of integrals on fractals. In the paper we compute the electric multipole moments for homogeneous fractal distribution of charges.Comment: LaTeX, 11 page

    Isotropic magnetometry with simultaneous excitation of orientation and alignment CPT resonances

    Full text link
    Atomic magnetometers have very high absolute precision and sensitivity to magnetic fields but suffer from a fundamental problem: the vectorial or tensorial interaction of light with atoms leads to "dead zones", certain orientations of magnetic field where the magnetometer loses its sensitivity. We demonstrate a simple polarization modulation scheme that simultaneously creates coherent population trapping (CPT) in orientation and alignment, thereby eliminating dead zones. Using 87^{87}Rb in a 10 Torr buffer gas cell we measure narrow, high-contrast CPT transparency peaks in all orientations and also show absence of systematic effects associated with non-linear Zeeman splitting.Comment: 4 pages, 4 figure

    Lattice vibrations and structural instability in Cesium near the cubic to tetragonal transition

    Full text link
    Under pressure cesium undergoes a transition from a high-pressure fcc phase (Cs-II) to a collapsed fcc phase (Cs-III) near 4.2GPa. At 4.4GPa there follows a transition to the tetragonal Cs-IV phase. In order to investigate the lattice vibrations in the fcc phase and seek a possible dynamical instability of the lattice, the phonon spectra of fcc-Cs at volumes near the III-IV transition are calculated using Savrasov's density functional linear-response LMTO method. Compared with quasiharmonic model calculations including non-central interatomic forces up to second neighbours, at the volume V/V0=0.44V/V_0= 0.44 (V0V_0 is the experimental volume of bcc-Cs with a0a_0=6.048{\AA}), the linear-response calculations show soft intermediate wavelength T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons. Similar softening is also observed for short wavelength L[ξξξ]L[\xi\xi\xi] and L[00ξ]L[00\xi] phonons and intermediate wavelength L[ξξξ]L[\xi\xi\xi] phonons. The Born-von K\'{a}rm\'{a}n analysis of dispersion curves indicates that the interplanar force constants exhibit oscillating behaviours against plane spacing nn and the large softening of intermediate wavelength T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons results from a negative (110)-interplanar force-constant Φn=2\Phi_{n=2}. The frequencies of the T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons with ξ\xi around 1/3 become imaginary and the fcc structure becomes dynamically unstable for volumes below 0.41V00.41V_0. It is suggested that superstructures corresponding to the q≠0\mathbf{q}{\neq}0 soft mode should be present as a precursor of tetragonal Cs-IV structure.Comment: 12 pages, 5 figure

    Characterization of surficial units on Mars using Viking orbiter multispectral image and thermal data

    Get PDF
    Albedo and thermal property correlations of the topography of Mars were conducted with emphases upon the types and origins of materials exposed in the central equatorial region. This area displays a wide variation in color, albedo and thermal properties, and is relatively free of dust and haze. The physical, mineralogical and elemental characteristics of this area are discussed

    Ultraviolet downconverting phosphor for use with silicon CCD imagers

    Get PDF
    The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be ~20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 X 800 CCD coated with coronene is presented

    Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds.

    Get PDF
    Recycled plastics are low-value commodities due to residual impurities and the degradation of polymer properties with each cycle of re-use. Plastics that undergo reversible polymerization allow high-value monomers to be recovered and re-manufactured into pristine materials, which should incentivize recycling in closed-loop life cycles. However, monomer recovery is often costly, incompatible with complex mixtures and energy-intensive. Here, we show that next-generation plastics-polymerized using dynamic covalent diketoenamine bonds-allow the recovery of monomers from common additives, even in mixed waste streams. Poly(diketoenamine)s 'click' together from a wide variety of triketones and aromatic or aliphatic amines, yielding only water as a by-product. Recovered monomers can be re-manufactured into the same polymer formulation, without loss of performance, as well as other polymer formulations with differentiated properties. The ease with which poly(diketoenamine)s can be manufactured, used, recycled and re-used-without losing value-points to new directions in designing sustainable polymers with minimal environmental impact

    Hawking Radiation for Non-minimally Coupled Matter from Generalized 2D Black Hole Models

    Get PDF
    It is well known that spherically symmetric reduction of General Relativity (SSG) leads to non-minimally coupled scalar matter. We generalize (and correct) recent results to Hawking radiation for a class of dilaton models which share with the Schwarzschild black hole non-minimal coupling of scalar fields and the basic global structure. An inherent ambiguity of such models (if they differ from SSG) is discussed. However, for SSG we obtain the rather disquieting result of a negative Hawking flux at infinity, if the usual recipe for such calculations is applied.Comment: 8 page

    Stellar Oscillations Network Group

    Full text link
    Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V<6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.Comment: Proc. Vienna Workshop on the Future of Asteroseismology, 20 - 22 September 2006. Comm. in Asteroseismology, Vol. 150, in the pres
    • …
    corecore