1,294 research outputs found

    Heterogeneous formic acid production by hydrogenation of CO₂ catalyzed by Ir‐bpy embedded in polyphenylene porous organic polymers

    Get PDF
    Heterogeneous immobilized molecular catalysis has gained significant attention as a platform for creating more efficient and selective catalysts. A promising type of immobilized molecular catalysts are made from porous organic polymers (POPs) due to their high stability, porosity, and ability to mimic the catalytic activity and selectivity of homogeneous organometallic catalysts. These properties of the POP-based systems make them very attractive as heterogeneous catalysts for hydrogenation of CO2 to formate, where predominately homogeneous systems have been applied. In this study, five POPs were synthesized and assessed in the hydrogenation of CO2 where the active catalysts were made in-situ by mixing IrCl3 and the POPs. One of the Ir/POP catalysts provided a turn-over number (TON) >20,000, which is among the highest for POP-based systems. Thorough characterization (CO2- and N2-physisorption, TGA, CHN-analysis, XRD, XPS, SEM, STEM and TEM) was performed. Notably, the developed Ir/POP system also showed catalytic activity for the decomposition of formic acid into H2 enabling the use of formic acid as a renewable energy carrier

    Discovering the composite Higgs through the decay of a heavy fermion

    Full text link
    A possible composite nature of the Higgs could be revealed at the early stage of the LHC, by analyzing the channels where the Higgs is produced from the decay of a heavy fermion. The Higgs production from a singly-produced heavy bottom, in particular, proves to be a promising channel. For a value \lambda=3 of the Higgs coupling to a heavy bottom, for example, we find that, considering a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible at the 8 TeV LHC with 30 fb^{-1} if the heavy bottom is lighter than roughly 530 GeV (while an observation is possible for heavy bottom masses up to 650 GeV). Such a relatively light heavy bottom is realistic in composite Higgs models of the type considered and, up to now, experimentally allowed. At \sqrt{s}=14 TeV the LHC sensitivity on the channel increases significantly. With \lambda=3 a discovery can occur, with 100 fb^{-1}, for heavy bottom masses up to 1040 GeV. In the case the heavy bottom was as light as 500 GeV, the 14 TeV LHC would be sensitive to the measure of the \lambda\ coupling in basically the full range \lambda>1 predicted by the theory.Comment: 25 pp. v2: Minor changes. v3: Version accepted for publication in JHEP. v4: typos fixe

    Top Partner Discovery in the TtZT\to tZ channel at the LHC

    Get PDF
    In this paper we study the discovery potential of the LHC run II for heavy vector-like top quarks in the decay channel to a top and a ZZ boson. Despite the usually smaller branching ratio compared to charged-current decays, this channel is rather clean and allows for a complete mass reconstruction of the heavy top. The latter is achieved in the leptonic decay channel of the ZZ boson and in the fully hadronic top channel using boosted jet and jet substructure techniques. To be as model-independent as possible, a simplified model approach with only two free parameters has been applied. The results are presented in terms of parameter space regions for 3σ3\sigma evidence or 5σ5\sigma discovery for such new states in that channel.Comment: 24 pages, 8 figures, version 2 updated to JHEP 01 (2015) 08

    Observing solar-like oscillations

    Get PDF
    We review techniques for measuring stellar oscillations in solar-type stars. Despite great efforts, no unambiguous detections have been made. A new method, based on monitoring the equivalent widths of strong lines, shows promise but is yet to be confirmed. We also discuss several subtleties, such as the need to correct for CCD non-linearities and the importance of data weighting

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Reporting and evaluating genetic association studies

    Get PDF
    Genetic association studies have become an important part of our scientific landscape. This commentary discusses some basic scientific issues which should be considered when reporting and evaluating such studies including SNP Discovery, Genotyping and Haplotype Analysis; Population Size, Matching of Cases and Controls, and Population Stratification; Phenotype Definition and Multiple Related Phenotypes; Multiple Testing; Replication; Genome-wide Association Studies (GWAS); and the Role of Functional Studies. All of these elements are important in evaluating such studies and should be carefully considered when these studies are conceived and carried out

    Non-Compliance with Growth Hormone Treatment in Children Is Common and Impairs Linear Growth

    Get PDF
    BACKGROUND: GH therapy requires daily injections over many years and compliance can be difficult to sustain. As growth hormone (GH) is expensive, non-compliance is likely to lead to suboptimal growth, at considerable cost. Thus, we aimed to assess the compliance rate of children and adolescents with GH treatment in New Zealand. METHODS: This was a national survey of GH compliance, in which all children receiving government-funded GH for a four-month interval were included. Compliance was defined as ≥ 85% adherence (no more than one missed dose a week on average) to prescribed treatment. Compliance was determined based on two parameters: either the number of GH vials requested (GHreq) by the family or the number of empty GH vials returned (GHret). Data are presented as mean ± SEM. FINDINGS: 177 patients were receiving GH in the study period, aged 12.1 ± 0.6 years. The rate of returned vials, but not number of vials requested, was positively associated with HVSDS (p < 0.05), such that patients with good compliance had significantly greater linear growth over the study period (p<0.05). GHret was therefore used for subsequent analyses. 66% of patients were non-compliant, and this outcome was not affected by sex, age or clinical diagnosis. However, Maori ethnicity was associated with a lower rate of compliance. INTERPRETATION: An objective assessment of compliance such as returned vials is much more reliable than compliance based on parental or patient based information. Non-compliance with GH treatment is common, and associated with reduced linear growth. Non-compliance should be considered in all patients with apparently suboptimal response to GH treatment
    corecore