59 research outputs found

    1I. Vitamin D receptor-like receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Vitamin D (VDR), Pregnane X (PXR) and Constitutive Androstane (CAR) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [47]) are members of the NR1I family of nuclear receptors, which form heterodimers with members of the retinoid X receptor family. PXR and CAR are activated by a range of exogenous compounds, with no established endogenous physiological agonists, although high concentrations of bile acids and bile pigments activate PXR and CAR [47]

    1I. Vitamin D receptor-like receptors in GtoPdb v.2023.1

    Get PDF
    Vitamin D (VDR), Pregnane X (PXR) and Constitutive Androstane (CAR) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [50, 1]) are members of the NR1I family of nuclear receptors, which form heterodimers with members of the retinoid X receptor family. PXR and CAR are activated by a range of exogenous compounds, with no established endogenous physiological agonists, although high concentrations of bile acids and bile pigments activate PXR and CAR [50]

    Calbindin-D28k gene expression in the developing mouse kidney

    Get PDF
    Calbindin-D28k gene expression in the developing mouse kidney. Calbindin-D28k appears in the metanephric kidney during embryogenesis. We studied the temporal appearance and spatial distribution of calbindin-D28k mRNA in the developing kidneys of 12-day fetal through 21-day postnatal mice by in situ hybridization. 35S-UTP-labeled antisense (cRNA) probe to calbindin-D28k mRNA hybridized to the ureteric buds of 12-day embryos, whereas adjacent metanephrogenic tissue was unlabeled. By embryonic day 13, Y-shaped bodies of “advancing” ureteric buds were labeled intensely. In 16-day embryos, ampullae of ureteric buds were located immediately beneath the renal capsule and labeled strongly, in contrast to metanephric tubules and S-shaped bodies. The former were unlabeled and the latter were labeled only at points of contact with the ampullae. Subsequently, the ampullae of the metanephric ureteric buds hybridized with the cRNA probe, and from the 18th embryonic to the 21st postnatal day, this labeling was intense. The cRNA probe did not hybridize with the renal vesicles, proximal tubules, or tubular segments of Henle's loop derived from nephrogenic blastema, but it did label distal nephron segments. By the 21st postnatal day, collecting ducts and ureter no longer were labeled. In conclusion, calbindin-D28k mRNA is present in the developing mouse kidney, and its distribution during nephrogenesis is identical to that of calbindin-D28k per se. Collectively, these findings show that the calbindin-D28k gene is transcribed and its message is translated by the cells of the ureteric bud during the initial stage of renal morphogenesis

    Vitamin D: beyond bone.

    Get PDF
    In recent years, vitamin D has been received increased attention due to the resurgence of vitamin D deficiency and rickets in developed countries and the identification of extraskeletal effects of vitamin D, suggesting unexpected benefits of vitamin D in health and disease, beyond bone health. The possibility of extraskeletal effects of vitamin D was first noted with the discovery of the vitamin D receptor (VDR) in tissues and cells that are not involved in maintaining mineral homeostasis and bone health, including skin, placenta, pancreas, breast, prostate and colon cancer cells, and activated T cells. However, the biological significance of the expression of the VDR in different tissues is not fully understood, and the role of vitamin D in extraskeletal health has been a matter of debate. This report summarizes recent research on the roles for vitamin D in cancer, immunity and autoimmune diseases, cardiovascular and respiratory health, pregnancy, obesity, erythropoiesis, diabetes, muscle function, and aging

    Highlights from the 24th workshop on vitamin D in Austin, September 2022

    Get PDF
    The 24th Workshop on Vitamin D was held September 7-9, 2022 in Austin, Texas and covered a wide diversity of research in the vitamin D field from across the globe. Here, we summarize the meeting, individual sessions, awards and presentations given

    Vitamin D: beyond bone

    No full text

    Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D

    No full text
    Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases

    Vitamin D deficiency: protective against enteric infection?

    No full text
    corecore